Abstract:Mobile robots are increasingly utilized in agriculture to automate labor-intensive tasks such as weeding, sowing, harvesting and soil analysis. Recently, agricultural robots have been developed to detect and remove weeds using mechanical tools or precise herbicide sprays. Mechanical weeding is inefficient over large fields, and herbicides harm the soil ecosystem. Laser weeding with mobile robots has emerged as a sustainable alternative in precision farming. In this paper, we present an autonomous weeding robot that uses controlled exposure to a low energy laser beam for weed removal. The proposed robot is six-wheeled with a novel double four-bar suspension for higher stability. The laser is guided towards the detected weeds by a three-dimensional linear actuation mechanism. Field tests have demonstrated the robot's capability to navigate agricultural terrains effectively by overcoming obstacles up to 15 cm in height. At an optimal speed of 42.5 cm/s, the robot achieves a weed detection rate of 86.2\% and operating time of 87 seconds per meter. The laser actuation mechanism maintains a minimal mean positional error of 1.54 mm, combined with a high hit rate of 97\%, ensuring effective and accurate weed removal. This combination of speed, accuracy, and efficiency highlights the robot's potential for significantly enhancing precision farming practices.
Abstract:This paper introduces an approach for developing surrogate environments in reinforcement learning (RL) using the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm. We demonstrate the effectiveness of our approach through extensive experiments in OpenAI Gym environments, particularly Mountain Car and Lunar Lander. Our results show that SINDy-based surrogate models can accurately capture the underlying dynamics of these environments while reducing computational costs by 20-35%. With only 75 interactions for Mountain Car and 1000 for Lunar Lander, we achieve state-wise correlations exceeding 0.997, with mean squared errors as low as 3.11e-06 for Mountain Car velocity and 1.42e-06 for LunarLander position. RL agents trained in these surrogate environments require fewer total steps (65,075 vs. 100,000 for Mountain Car and 801,000 vs. 1,000,000 for Lunar Lander) while achieving comparable performance to those trained in the original environments, exhibiting similar convergence patterns and final performance metrics. This work contributes to the field of model-based RL by providing an efficient method for generating accurate, interpretable surrogate environments.