Abstract:One of the fastest-growing domains in AI is healthcare. Given its importance, it has been the interest of many researchers to deploy ML models into the ever-demanding healthcare domain to aid doctors and increase accessibility. Delivering reliable models, however, demands a sizable amount of data, and the recent COVID-19 pandemic served as a reminder of the rampant and scary nature of healthcare that makes training models difficult. To alleviate such scarcity, many published works attempted to synthesize radiological cough data to train better COVID-19 detection models on the respective radiological data. To accommodate the time sensitivity expected during a pandemic, this work focuses on detecting COVID-19 through coughs using synthetic data to improve the accuracy of the classifier. The work begins by training a CNN on a balanced subset of the Coughvid dataset, establishing a baseline classification test accuracy of 72%. The paper demonstrates how an Auxiliary Classification GAN (ACGAN) may be trained to conditionally generate novel synthetic Mel Spectrograms of both healthy and COVID-19 coughs. These coughs are used to augment the training dataset of the CNN classifier, allowing it to reach a new test accuracy of 75%. The work highlights the expected messiness and inconsistency in training and offers insights into detecting and handling such shortcomings.
Abstract:This research paper addresses the significant challenge of accurately estimating poverty levels using deep learning, particularly in developing regions where traditional methods like household surveys are often costly, infrequent, and quickly become outdated. To address these issues, we propose a state-of-the-art Convolutional Neural Network (CNN) architecture, extending the ResNet50 model by incorporating a Gated-Attention Feature-Fusion Module (GAFM). Our architecture is designed to improve the model's ability to capture and combine both global and local features from satellite images, leading to more accurate poverty estimates. The model achieves a 75% R2 score, significantly outperforming existing leading methods in poverty mapping. This improvement is due to the model's capacity to focus on and refine the most relevant features, filtering out unnecessary data, which makes it a powerful tool for remote sensing and poverty estimation.