Abstract:Feature selection is essential for efficient data mining and sometimes encounters the positive-unlabeled (PU) learning scenario, where only a few positive labels are available, while most data remains unlabeled. In certain real-world PU learning tasks, data subjected to adequate feature selection often form clusters with concentrated positive labels. Conventional feature selection methods that treat unlabeled data as negative may fail to capture the statistical characteristics of positive data in such scenarios, leading to suboptimal performance. To address this, we propose a novel feature selection method based on the cluster assumption in PU learning, called FSCPU. FSCPU formulates the feature selection problem as a binary optimization task, with an objective function explicitly designed to incorporate the cluster assumption in the PU learning setting. Experiments on synthetic datasets demonstrate the effectiveness of FSCPU across various data conditions. Moreover, comparisons with 10 conventional algorithms on three open datasets show that FSCPU achieves competitive performance in downstream classification tasks, even when the cluster assumption does not strictly hold.
Abstract:Large language models (LLMs) are increasingly utilized in domains such as finance, healthcare, and interpersonal relationships to provide advice tailored to user traits and contexts. However, this personalization often relies on sensitive data, raising critical privacy concerns and necessitating data minimization. To address these challenges, we propose a framework that integrates zero-knowledge proof (ZKP) technology, specifically zkVM, with LLM-based chatbots. This integration enables privacy-preserving data sharing by verifying user traits without disclosing sensitive information. Our research introduces both an architecture and a prompting strategy for this approach. Through empirical evaluation, we clarify the current constraints and performance limitations of both zkVM and the proposed prompting strategy, thereby demonstrating their practical feasibility in real-world scenarios.