Abstract:Integrated Sensing and Communications (ISAC) is defined as one of six usage scenarios in the ITU-R International Mobile Telecommunications (IMT) 2030 framework for 6G. ISAC is envisioned to introduce the sensing capability into the cellular network, where sensing may be obtained using the cellular radio frequency (RF) signals with or without additional auxiliary sensors. To enable ISAC, specification bodies such as European Telecommunications Standards Institute (ETSI) and Third Generation Partnership Project (3GPP) have already started to look into detailed ISAC use cases, their requirements, and the channel models and evaluation methodologies that are necessary to design and evaluate ISAC performance. With focus on the channel model, the current communication-centric channel models like those specified in 3GPP technical report (TR) 38.901 do not cover the RF signals interactions between the transmitter, target object, receiver and their surrounding environment. To bridge this gap, 3GPP has been looking into the basic changes that are necessary to make to their TR38.901 channel model with focus on selected use cases from the 3GPP SA1 5G-Advanced feasibility study. In parallel, ETSI ISAC Industry Specification Group (ISG) has been studying the more advanced ISAC channel modelling features that are needed to support the variety of ISAC use cases envisioned in 6G. In this paper, we present the baseline and advanced features developed thus far in 3GPP and ETSI ISAC ISG, respectively, towards a comprehensive view of the ISAC channel model in 6G.
Abstract:Measuring rotation speed is essential to many engineering applications; it elicits faults undetectable by vibration monitoring alone and enhances the vibration signal analysis of rotating machines. Optical, magnetic or mechanical Tachometers are currently state-of-art. Their limitations are they require line-of-sight, direct access to the rotating object. This paper proposes RFTacho, a rotation speed measurement \emph{system} that leverages novel hardware and signal processing algorithms to produce highly accurate readings conveniently. RFTacho uses RF Orbital Angular Momentum (OAM) waves to measure rotation speed of multiple machines simultaneously with no requirements from the machine's properties. OAM antennas allow it to operate in high-scattering environments, commonly found in industries, as they are resilient to de-polarization compared to linearly polarized antennas. RFTacho achieves this by using two novel signal processing algorithms to extract the rotation speed of several rotating objects simultaneously amidst noise arising from high-scattering environments, non-line-of-sight scenarios and dynamic environmental conditions with a resolution of $1 rpm$. We test RFTacho on several real-world machines like fans, motors, air conditioners. Results show that RFTacho has avg. error of $<0.5\%$ compared to ground truth. We demonstrate RFTacho's simultaneous multiple-object measurement capability that other tachometers do not have. Initial experiments show that RFTacho can measure speeds as high as 7000 rpm (theoretically 60000 rpm) with high resiliency at different coverage distances and orientation angles, requiring only 150 mW transmit power while operating in the 5 GHz license-exempt band. RFTacho is the first RF-based sensing system that combines OAM waves and novel processing approaches to measure the rotation speed of multiple machines simultaneously in a non-intrusive way.