Abstract:In recent years, the deterioration of artificial materials used in structures has become a serious social issue, increasing the importance of inspections. Non-destructive testing is gaining increased demand due to its capability to inspect for defects and deterioration in structures while preserving their functionality. Among these, Laser Ultrasonic Visualization Testing (LUVT) stands out because it allows the visualization of ultrasonic propagation. This makes it visually straightforward to detect defects, thereby enhancing inspection efficiency. With the increasing number of the deterioration structures, challenges such as a shortage of inspectors and increased workload in non-destructive testing have become more apparent. Efforts to address these challenges include exploring automated inspection using machine learning. However, the lack of anomalous data with defects poses a barrier to improving the accuracy of automated inspection through machine learning. Therefore, in this study, we propose a method for automated LUVT inspection using an anomaly detection approach with a diffusion model that can be trained solely on negative examples (defect-free data). We experimentally confirmed that our proposed method improves defect detection and localization compared to general object detection algorithms used previously.
Abstract:In recent years, laser ultrasonic visualization testing (LUVT) has attracted much attention because of its ability to efficiently perform non-contact ultrasonic non-destructive testing.Despite many success reports of deep learning based image analysis for widespread areas, attempts to apply deep learning to defect detection in LUVT images face the difficulty of preparing a large dataset of LUVT images that is too expensive to scale. To compensate for the scarcity of such training data, we propose a data augmentation method that generates artificial LUVT images by simulation and applies a style transfer to simulated LUVT images.The experimental results showed that the effectiveness of data augmentation based on the style-transformed simulated images improved the prediction performance of defects, rather than directly using the raw simulated images for data augmentation.