Abstract:Artificial intelligence in medical imaging has seen unprecedented growth in the last years, due to rapid advances in deep learning and computing resources. Applications cover the full range of existing medical imaging modalities, with unique characteristics driven by the physics of each technique. Yet, artificial intelligence professionals entering the field, and even experienced developers, often lack a comprehensive understanding of the physical principles underlying medical image acquisition, which hinders their ability to fully leverage its potential. The integration of physics knowledge into artificial intelligence algorithms enhances their trustworthiness and robustness in medical imaging, especially in scenarios with limited data availability. In this work, we review the fundamentals of physics in medical images and their impact on the latest advances in artificial intelligence, particularly, in generative models and reconstruction algorithms. Finally, we explore the integration of physics knowledge into physics-inspired machine learning models, which leverage physics-based constraints to enhance the learning of medical imaging features.
Abstract:Prognosis after intracranial hemorrhage (ICH) is influenced by a complex interplay between imaging and tabular data. Rapid and reliable prognosis are crucial for effective patient stratification and informed treatment decision-making. In this study, we aim to enhance image-based prognosis by learning a robust feature representation shared between prognosis and the clinical and demographic variables most highly correlated with it. Our approach mimics clinical decision-making by reinforcing the model to learn valuable prognostic data embedded in the image. We propose a 3D multi-task image model to predict prognosis, Glasgow Coma Scale and age, improving accuracy and interpretability. Our method outperforms current state-of-the-art baseline image models, and demonstrates superior performance in ICH prognosis compared to four board-certified neuroradiologists using only CT scans as input. We further validate our model with interpretability saliency maps. Code is available at https://github.com/MiriamCobo/MultitaskLearning_ICH_Prognosis.git.