Abstract:Artificial intelligence in medical imaging has seen unprecedented growth in the last years, due to rapid advances in deep learning and computing resources. Applications cover the full range of existing medical imaging modalities, with unique characteristics driven by the physics of each technique. Yet, artificial intelligence professionals entering the field, and even experienced developers, often lack a comprehensive understanding of the physical principles underlying medical image acquisition, which hinders their ability to fully leverage its potential. The integration of physics knowledge into artificial intelligence algorithms enhances their trustworthiness and robustness in medical imaging, especially in scenarios with limited data availability. In this work, we review the fundamentals of physics in medical images and their impact on the latest advances in artificial intelligence, particularly, in generative models and reconstruction algorithms. Finally, we explore the integration of physics knowledge into physics-inspired machine learning models, which leverage physics-based constraints to enhance the learning of medical imaging features.
Abstract:Prognosis after intracranial hemorrhage (ICH) is influenced by a complex interplay between imaging and tabular data. Rapid and reliable prognosis are crucial for effective patient stratification and informed treatment decision-making. In this study, we aim to enhance image-based prognosis by learning a robust feature representation shared between prognosis and the clinical and demographic variables most highly correlated with it. Our approach mimics clinical decision-making by reinforcing the model to learn valuable prognostic data embedded in the image. We propose a 3D multi-task image model to predict prognosis, Glasgow Coma Scale and age, improving accuracy and interpretability. Our method outperforms current state-of-the-art baseline image models, and demonstrates superior performance in ICH prognosis compared to four board-certified neuroradiologists using only CT scans as input. We further validate our model with interpretability saliency maps. Code is available at https://github.com/MiriamCobo/MultitaskLearning_ICH_Prognosis.git.
Abstract:The evolution of the information and communication technologies has dramatically increased the number of people with access to the Internet, which has changed the way the information is consumed. As a consequence of the above, fake news have become one of the major concerns because its potential to destabilize governments, which makes them a potential danger to modern society. An example of this can be found in the US. electoral campaign, where the term "fake news" gained great notoriety due to the influence of the hoaxes in the final result of these. In this work the feasibility of applying deep learning techniques to discriminate fake news on the Internet using only their text is studied. In order to accomplish that, three different neural network architectures are proposed, one of them based on BERT, a modern language model created by Google which achieves state-of-the-art results.
Abstract:The application of deep learning techniques using convolutional neural networks to the classification of particle collisions in High Energy Physics is explored. An intuitive approach to transform physical variables, like momenta of particles and jets, into a single image that captures the relevant information, is proposed. The idea is tested using a well known deep learning framework on a simulation dataset, including leptonic ttbar events and the corresponding background at 7 TeV from the CMS experiment at LHC, available as Open Data. This initial test shows competitive results when compared to more classical approaches, like those using feedforward neural networks.