Abstract:Collecting and labeling real datasets to train the person search networks not only requires a lot of time and effort, but also accompanies privacy issues. The weakly-supervised and unsupervised domain adaptation methods have been proposed to alleviate the labeling burden for target datasets, however, their generalization capability is limited. We introduce a novel person search method based on the domain generalization framework, that uses an automatically labeled unreal dataset only for training but is applicable to arbitrary unseen real datasets. To alleviate the domain gaps when transferring the knowledge from the unreal source dataset to the real target datasets, we estimate the fidelity of person instances which is then used to train the end-to-end network adaptively. Moreover, we devise a domain-invariant feature learning scheme to encourage the network to suppress the domain-related features. Experimental results demonstrate that the proposed method provides the competitive performance to existing person search methods even though it is applicable to arbitrary unseen datasets without any prior knowledge and re-training burdens.
Abstract:Lifelong person re-identification (LReID) assumes a practical scenario where the model is sequentially trained on continuously incoming datasets while alleviating the catastrophic forgetting in the old datasets. However, not only the training datasets but also the gallery images are incrementally accumulated, that requires a huge amount of computational complexity and storage space to extract the features at the inference phase. In this paper, we address the above mentioned problem by incorporating the backward-compatibility to LReID for the first time. We train the model using the continuously incoming datasets while maintaining the model's compatibility toward the previously trained old models without re-computing the features of the old gallery images. To this end, we devise the cross-model compatibility loss based on the contrastive learning with respect to the replay features across all the old datasets. Moreover, we also develop the knowledge consolidation method based on the part classification to learn the shared representation across different datasets for the backward-compatibility. We suggest a more practical methodology for performance evaluation as well where all the gallery and query images are considered together. Experimental results demonstrate that the proposed method achieves a significantly higher performance of the backward-compatibility compared with the existing methods. It is a promising tool for more practical scenarios of LReID.