Abstract:We present a training-free style-aligned image generation method that leverages a scale-wise autoregressive model. While large-scale text-to-image (T2I) models, particularly diffusion-based methods, have demonstrated impressive generation quality, they often suffer from style misalignment across generated image sets and slow inference speeds, limiting their practical usability. To address these issues, we propose three key components: initial feature replacement to ensure consistent background appearance, pivotal feature interpolation to align object placement, and dynamic style injection, which reinforces style consistency using a schedule function. Unlike previous methods requiring fine-tuning or additional training, our approach maintains fast inference while preserving individual content details. Extensive experiments show that our method achieves generation quality comparable to competing approaches, significantly improves style alignment, and delivers inference speeds over six times faster than the fastest model.
Abstract:Keyword spotting is often implemented by keyword classifier to the encoder in acoustic models, enabling the classification of predefined or open vocabulary keywords. Although keyword spotting is a crucial task in various applications and can be extended to call-for-help detection in emergencies, however, the previous method often suffers from scalability limitations due to retraining required to introduce new keywords or adapt to changing contexts. We explore a simple yet effective approach that leverages off-the-shelf pretrained ASR models to address these challenges, especially in call-for-help detection scenarios. Furthermore, we observed a substantial increase in false alarms when deploying call-for-help detection system in real-world scenarios due to noise introduced by microphones or different environments. To address this, we propose a novel noise-agnostic multitask learning approach that integrates a noise classification head into the ASR encoder. Our method enhances the model's robustness to noisy environments, leading to a significant reduction in false alarms and improved overall call-for-help performance. Despite the added complexity of multitask learning, our approach is computationally efficient and provides a promising solution for call-for-help detection in real-world scenarios.