Abstract:We present a novel neural model for modern poetry generation in French. The model consists of two pretrained neural models that are fine-tuned for the poem generation task. The encoder of the model is a RoBERTa based one while the decoder is based on GPT-2. This way the model can benefit from the superior natural language understanding performance of RoBERTa and the good natural language generation performance of GPT-2. Our evaluation shows that the model can create French poetry successfully. On a 5 point scale, the lowest score of 3.57 was given by human judges to typicality and emotionality of the output poetry while the best score of 3.79 was given to understandability.
Abstract:We present a method for extracting a multilingual sentiment annotated dialog data set from Fallout New Vegas. The game developers have preannotated every line of dialog in the game in one of the 8 different sentiments: \textit{anger, disgust, fear, happy, neutral, pained, sad } and \textit{surprised}. The game has been translated into English, Spanish, German, French and Italian. We conduct experiments on multilingual, multilabel sentiment analysis on the extracted data set using multilingual BERT, XLMRoBERTa and language specific BERT models. In our experiments, multilingual BERT outperformed XLMRoBERTa for most of the languages, also language specific models were slightly better than multilingual BERT for most of the languages. The best overall accuracy was 54\% and it was achieved by using multilingual BERT on Spanish data. The extracted data set presents a challenging task for sentiment analysis. We have released the data, including the testing and training splits, openly on Zenodo. The data set has been shuffled for copyright reasons.
Abstract:We present a novel approach to generating news headlines in Finnish for a given news story. We model this as a summarization task where a model is given a news article, and its task is to produce a concise headline describing the main topic of the article. Because there are no openly available GPT-2 models for Finnish, we will first build such a model using several corpora. The model is then fine-tuned for the headline generation task using a massive news corpus. The system is evaluated by 3 expert journalists working in a Finnish media house. The results showcase the usability of the presented approach as a headline suggestion tool to facilitate the news production process.
Abstract:Prerecorded laughter accompanying dialog in comedy TV shows encourages the audience to laugh by clearly marking humorous moments in the show. We present an approach for automatically detecting humor in the Friends TV show using multimodal data. Our model is capable of recognizing whether an utterance is humorous or not and assess the intensity of it. We use the prerecorded laughter in the show as annotation as it marks humor and the length of the audience's laughter tells us how funny a given joke is. We evaluate the model on episodes the model has not been exposed to during the training phase. Our results show that the model is capable of correctly detecting whether an utterance is humorous 78% of the time and how long the audience's laughter reaction should last with a mean absolute error of 600 milliseconds.
Abstract:Role-playing games (RPGs) have a considerable amount of text in video game dialogues. Quite often this text is semi-annotated by the game developers. In this paper, we extract a multilingual dataset of persuasive dialogue from several RPGs. We show the viability of this data in building a persuasion detection system using a natural language processing (NLP) model called BERT. We believe that video games have a lot of unused potential as a datasource for a variety of NLP tasks. The code and data described in this paper are available on Zenodo.
Abstract:The goal of the paper is to predict answers to questions given a passage of Qur'an. The answers are always found in the passage, so the task of the model is to predict where an answer starts and where it ends. As the initial data set is rather small for training, we make use of multilingual BERT so that we can augment the training data by using data available for languages other than Arabic. Furthermore, we crawl a large Arabic corpus that is domain specific to religious discourse. Our approach consists of two steps, first we train a BERT model to predict a set of possible answers in a passage. Finally, we use another BERT based model to rank the candidate answers produced by the first BERT model.
Abstract:The study forms a technical report of various tasks that have been performed on the materials collected and published by Finnish ethnographer and linguist, Matthias Alexander Castr\'en (1813-1852). The Finno-Ugrian Society is publishing Castr\'en's manuscripts as new critical and digital editions, and at the same time different research groups have also paid attention to these materials. We discuss the workflows and technical infrastructure used, and consider how datasets that benefit different computational tasks could be created to further improve the usability of these materials, and also to aid the further processing of similar archived collections. We specifically focus on the parts of the collections that are processed in a way that improves their usability in more technical applications, complementing the earlier work on the cultural and linguistic aspects of these materials. Most of these datasets are openly available in Zenodo. The study points to specific areas where further research is needed, and provides benchmarks for text recognition tasks.
Abstract:Measuring the semantic similarity of different texts has many important applications in Digital Humanities research such as information retrieval, document clustering and text summarization. The performance of different methods depends on the length of the text, the domain and the language. This study focuses on experimenting with some of the current approaches to Finnish, which is a morphologically rich language. At the same time, we propose a simple method, TFW2V, which shows high efficiency in handling both long text documents and limited amounts of data. Furthermore, we design an objective evaluation method which can be used as a framework for benchmarking text similarity approaches.
Abstract:We present the first openly available corpus for detecting depression in Thai. Our corpus is compiled by expert verified cases of depression in several online blogs. We experiment with two different LSTM based models and two different BERT based models. We achieve a 77.53\% accuracy with a Thai BERT model in detecting depression. This establishes a good baseline for future researcher on the same corpus. Furthermore, we identify a need for Thai embeddings that have been trained on a more varied corpus than Wikipedia. Our corpus, code and trained models have been released openly on Zenodo.
Abstract:Finnish is a language with multiple dialects that not only differ from each other in terms of accent (pronunciation) but also in terms of morphological forms and lexical choice. We present the first approach to automatically detect the dialect of a speaker based on a dialect transcript and transcript with audio recording in a dataset consisting of 23 different dialects. Our results show that the best accuracy is received by combining both of the modalities, as text only reaches to an overall accuracy of 57\%, where as text and audio reach to 85\%. Our code, models and data have been released openly on Github and Zenodo.