Abstract:Following up on our earlier study in [J. Bardhan et al., Machine learning-enhanced search for a vectorlike singlet B quark decaying to a singlet scalar or pseudoscalar, Phys. Rev. D 107 (2023) 115001; arXiv:2212.02442], we investigate the LHC prospects of pair-produced vectorlike $B$ quarks decaying exotically to a new gauge-singlet (pseudo)scalar field $\Phi$ and a $b$ quark. After the electroweak symmetry breaking, the $\Phi$ decays predominantly to $gg/bb$ final states, leading to a fully hadronic $2b+4j$ or $6b$ signature. Because of the large Standard Model background and the lack of leptonic handles, it is a difficult channel to probe. To overcome the challenge, we employ a hybrid deep learning model containing a graph neural network followed by a deep neural network. We estimate that such a state-of-the-art deep learning analysis pipeline can lead to a performance comparable to that in the semi-leptonic mode, taking the discovery (exclusion) reach up to about $M_B=1.8\:(2.4)$~TeV at HL-LHC when $B$ decays fully exotically, i.e., BR$(B \to b\Phi) = 100\%$.
Abstract:Machine learning methods have seen a meteoric rise in their applications in the scientific community. However, little effort has been put into understanding these "black box" models. We show how one can apply integrated gradients (IGs) to understand these models by designing different baselines, by taking an example case study in particle physics. We find that the zero-vector baseline does not provide good feature attributions and that an averaged baseline sampled from the background events provides consistently more reasonable attributions.