Abstract:Artificial intelligence (AI) is reshaping strategic planning, with Multi-Agent Reinforcement Learning (MARL) enabling coordination among autonomous agents in complex scenarios. However, its practical deployment in sensitive military contexts is constrained by the lack of explainability, which is an essential factor for trust, safety, and alignment with human strategies. This work reviews and assesses current advances in explainability methods for MARL with a focus on simulated air combat scenarios. We proceed by adapting various explainability techniques to different aerial combat scenarios to gain explanatory insights about the model behavior. By linking AI-generated tactics with human-understandable reasoning, we emphasize the need for transparency to ensure reliable deployment and meaningful human-machine interaction. By illuminating the crucial importance of explainability in advancing MARL for operational defense, our work supports not only strategic planning but also the training of military personnel with insightful and comprehensible analyses.
Abstract:This work presents a Hierarchical Multi-Agent Reinforcement Learning framework for analyzing simulated air combat scenarios involving heterogeneous agents. The objective is to identify effective Courses of Action that lead to mission success within preset simulations, thereby enabling the exploration of real-world defense scenarios at low cost and in a safe-to-fail setting. Applying deep Reinforcement Learning in this context poses specific challenges, such as complex flight dynamics, the exponential size of the state and action spaces in multi-agent systems, and the capability to integrate real-time control of individual units with look-ahead planning. To address these challenges, the decision-making process is split into two levels of abstraction: low-level policies control individual units, while a high-level commander policy issues macro commands aligned with the overall mission targets. This hierarchical structure facilitates the training process by exploiting policy symmetries of individual agents and by separating control from command tasks. The low-level policies are trained for individual combat control in a curriculum of increasing complexity. The high-level commander is then trained on mission targets given pre-trained control policies. The empirical validation confirms the advantages of the proposed framework.
Abstract:The application of artificial intelligence to simulate air-to-air combat scenarios is attracting increasing attention. To date the high-dimensional state and action spaces, the high complexity of situation information (such as imperfect and filtered information, stochasticity, incomplete knowledge about mission targets) and the nonlinear flight dynamics pose significant challenges for accurate air combat decision-making. These challenges are exacerbated when multiple heterogeneous agents are involved. We propose a hierarchical multi-agent reinforcement learning framework for air-to-air combat with multiple heterogeneous agents. In our framework, the decision-making process is divided into two stages of abstraction, where heterogeneous low-level policies control the action of individual units, and a high-level commander policy issues macro commands given the overall mission targets. Low-level policies are trained for accurate unit combat control. Their training is organized in a learning curriculum with increasingly complex training scenarios and league-based self-play. The commander policy is trained on mission targets given pre-trained low-level policies. The empirical validation advocates the advantages of our design choices.