Abstract:Hardware complexity continues to strain verification resources, motivating the adoption of machine learning (ML) methods to improve debug efficiency. However, ML-assisted debugging critically depends on diverse and scalable bug datasets, which existing manual or automated bug insertion methods fail to reliably produce. We introduce BugGen, a first of its kind, fully autonomous, multi-agent pipeline leveraging Large Language Models (LLMs) to systematically generate, insert, and validate realistic functional bugs in RTL. BugGen partitions modules, selects mutation targets via a closed-loop agentic architecture, and employs iterative refinement and rollback mechanisms to ensure syntactic correctness and functional detectability. Evaluated across five OpenTitan IP blocks, BugGen produced 500 unique bugs with 94% functional accuracy and achieved a throughput of 17.7 validated bugs per hour-over five times faster than typical manual expert insertion. Additionally, BugGen identified 104 previously undetected bugs in OpenTitan regressions, highlighting its utility in exposing verification coverage gaps. Compared against Certitude, BugGen demonstrated over twice the syntactic accuracy, deeper exposure of testbench blind spots, and more functionally meaningful and complex bug scenarios. Furthermore, when these BugGen-generated datasets were employed to train ML-based failure triage models, we achieved high classification accuracy (88.1%-93.2%) across different IP blocks, confirming the practical utility and realism of generated bugs. BugGen thus provides a scalable solution for generating high-quality bug datasets, significantly enhancing verification efficiency and ML-assisted debugging.
Abstract:In this report, we present the latest model of the Gemini family, Gemini 1.5 Pro, a highly compute-efficient multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. Gemini 1.5 Pro achieves near-perfect recall on long-context retrieval tasks across modalities, improves the state-of-the-art in long-document QA, long-video QA and long-context ASR, and matches or surpasses Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5 Pro's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 2.1 (200k) and GPT-4 Turbo (128k). Finally, we highlight surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.