Abstract:This paper analyzes international collaborations in Computer Science, focusing on three major players: China, the European Union, and the United States. Drawing from a comprehensive literature review, we examine collaboration patterns, research impact, retraction rates, and the role of the Development Index in shaping research outcomes. Our findings show that while China, the EU, and the US lead global research efforts, other regions are narrowing the gap in publication volume. Collaborations involving these key regions tend to have lower retraction rates, reflecting stronger adherence to scientific standards. We also find that countries with a Very High Development Index contribute to research with higher citation rates and fewer retractions. Overall, this study highlights the value of international collaboration and the importance of inclusive, ethical practices in advancing global research in Computer Science.
Abstract:We experimentally demonstrate a novel, low-complexity Fourier Convolution-based Network (FConvNet) based equalizer for 112 Gb/s upstream PAM4-PON. At a BER of 0.005, FConvNet enhances the receiver sensitivity by 2 and 1 dB compared to a 51-tap Sato equalizer and benchmark machine learning algorithms respectively.
Abstract:In recent years, extensive research has been conducted to explore the utilization of machine learning algorithms in various direct-detected and self-coherent short-reach communication applications. These applications encompass a wide range of tasks, including bandwidth request prediction, signal quality monitoring, fault detection, traffic prediction, and digital signal processing (DSP)-based equalization. As a versatile approach, machine learning demonstrates the ability to address stochastic phenomena in optical systems networks where deterministic methods may fall short. However, when it comes to DSP equalization algorithms, their performance improvements are often marginal, and their complexity is prohibitively high, especially in cost-sensitive short-reach communications scenarios such as passive optical networks (PONs). They excel in capturing temporal dependencies, handling irregular or nonlinear patterns effectively, and accommodating variable time intervals. Within this extensive survey, we outline the application of machine learning techniques in short-reach communications, specifically emphasizing their utilization in high-bandwidth demanding PONs. Notably, we introduce a novel taxonomy for time-series methods employed in machine learning signal processing, providing a structured classification framework. Our taxonomy categorizes current time series methods into four distinct groups: traditional methods, Fourier convolution-based methods, transformer-based models, and time-series convolutional networks. Finally, we highlight prospective research directions within this rapidly evolving field and outline specific solutions to mitigate the complexity associated with hardware implementations. We aim to pave the way for more practical and efficient deployment of machine learning approaches in short-reach optical communication systems by addressing complexity concerns.
Abstract:A frequency-calibrated SCINet (FC-SCINet) equalizer is proposed for down-stream 100G PON with 28.7 dB path loss. At 5 km, FC-SCINet improves the BER by 88.87% compared to FFE and a 3-layer DNN with 10.57% lower complexity.