Abstract:We introduce the Grasp EveryThing (GET) gripper, a novel 1-DoF, 3-finger design for securely grasping objects of many shapes and sizes. Mounted on a standard parallel jaw actuator, the design features three narrow, tapered fingers arranged in a two-against-one configuration, where the two fingers converge into a V-shape. The GET gripper is more capable of conforming to object geometries and forming secure grasps than traditional designs with two flat fingers. Inspired by the principle of self-similarity, these V-shaped fingers enable secure grasping across a wide range of object sizes. Further to this end, fingers are parametrically designed for convenient resizing and interchangeability across robotic embodiments with a parallel jaw gripper. Additionally, we incorporate a rigid fingernail to enhance small object manipulation. Tactile sensing can be integrated into the standalone finger via an externally-mounted camera. A neural network was trained to estimate normal force from tactile images with an average validation error of 1.3~N across a diverse set of geometries. In grasping 15 objects and performing 3 tasks via teleoperation, the GET fingers consistently outperformed standard flat fingers. Finger designs for use with multiple robotic embodiments are available on GitHub.
Abstract:Compliance is a useful parametrization of tactile information that humans often utilize in manipulation tasks. It can be used to inform low-level contact-rich actions or characterize objects at a high-level. In robotic manipulation, existing approaches to estimate compliance have struggled to generalize across object shape and material. Using camera-based tactile sensors, we present a novel approach to parametrize compliance through Young's modulus E. We evaluate our method over a novel dataset of 285 common objects, including a wide array of shapes and materials with Young's moduli ranging from 5.0 kPa to 250 GPa. Data is collected over automated parallel grasps of each object. Combining analytical and data-driven approaches, we develop a hybrid system using a multi-tower neural network to analyze a sequence of tactile images from grasping. This system is shown to estimate the Young's modulus of unseen objects within an order of magnitude at 74.2% accuracy across our dataset. This is a drastic improvement over a purely analytical baseline, which exhibits only 28.9% accuracy. Importantly, this estimation system performs irrespective of object geometry and demonstrates robustness across object materials. Thus, it could be applied in a general robotic manipulation setting to characterize unknown objects and inform decision-making, for instance to sort produce by ripeness.
Abstract:Rock skipping is a highly dynamic and relatively complex task that can easily be performed by humans. This project aims to bring rock skipping into a robotic setting, utilizing the lessons we learned in Robotic Manipulation. Specifically, this project implements a system consisting of a robotic arm and dynamic environment to perform rock skipping in simulation. By varying important parameters such as release velocity, we hope to use our system to gain insight into the most important factors for maximizing the total number of skips. In addition, by implementing the system in simulation, we have a more rigorous and precise testing approach over these varied test parameters. However, this project experienced some limitations due to gripping inefficiencies and problems with release height trajectories which is further discussed in our report.
Abstract:Trajectories are optimized for a two-dimensional simplified skateboarding system to allow it to perform a fundamental skateboarding trick called an "ollie". A methodology for generating trick trajectories by controlling the position of a point-mass relative to a board is presented and demonstrated over a range of peak jump heights. A hybrid dynamics approach is taken to perform this optimization, with contact constraints applied along a sequence of discrete timesteps based on the board's position throughout designated sections of the trick. These constraints introduce explicit and implicit discontinuities between chosen sections of the trick sequence. The approach has been shown to be successful for a set of realistic system parameters.