Abstract:Lightweight semantic segmentation is essential for many downstream vision tasks. Unfortunately, existing methods often struggle to balance efficiency and performance due to the complexity of feature modeling. Many of these existing approaches are constrained by rigid architectures and implicit representation learning, often characterized by parameter-heavy designs and a reliance on computationally intensive Vision Transformer-based frameworks. In this work, we introduce an efficient paradigm by synergizing explicit and implicit modeling to balance computational efficiency with representational fidelity. Our method combines well-defined Cartesian directions with explicitly modeled views and implicitly inferred intermediate representations, efficiently capturing global dependencies through a nested attention mechanism. Extensive experiments on challenging datasets, including ADE20K, CityScapes, Pascal Context, and COCO-Stuff, demonstrate that LeMoRe strikes an effective balance between performance and efficiency.
Abstract:Semantic segmentation assigns labels to pixels in images, a critical yet challenging task in computer vision. Convolutional methods, although capturing local dependencies well, struggle with long-range relationships. Vision Transformers (ViTs) excel in global context capture but are hindered by high computational demands, especially for high-resolution inputs. Most research optimizes the encoder architecture, leaving the bottleneck underexplored - a key area for enhancing performance and efficiency. We propose ContextFormer, a hybrid framework leveraging the strengths of CNNs and ViTs in the bottleneck to balance efficiency, accuracy, and robustness for real-time semantic segmentation. The framework's efficiency is driven by three synergistic modules: the Token Pyramid Extraction Module (TPEM) for hierarchical multi-scale representation, the Transformer and Modulating DepthwiseConv (Trans-MDC) block for dynamic scale-aware feature modeling, and the Feature Merging Module (FMM) for robust integration with enhanced spatial and contextual consistency. Extensive experiments on ADE20K, Pascal Context, CityScapes, and COCO-Stuff datasets show ContextFormer significantly outperforms existing models, achieving state-of-the-art mIoU scores, setting a new benchmark for efficiency and performance. The codes will be made publicly available.