Abstract:Time series forecasting remains a challenging task for foundation models due to temporal heterogeneity, high dimensionality, and the lack of inherent symbolic structure. In this work, we propose DRAGON (Discrete Representation and Augmented Graph encoding Over deBruijN Graphs), a novel encoder that introduces Multivariate de Bruijn Graphs (MdBGs) to bridge the gap between symbolic representations and neural modeling. DRAGON discretizes continuous input sequences and maps them onto a fixed graph structure, enabling dynamic context recovery via graph-based attention. Integrated as an auxiliary module within a dual-branch architecture, DRAGON augments conventional CNN-based encoders with symbolic, structure-aware representations. All code developed for this study is available at: https://github.com/KurbanIntelligenceLab/MultdBG-Time-Series-Library