Abstract:We characterise the problem of abstraction in the context of deep reinforcement learning. Various well established approaches to analogical reasoning and associative memory might be brought to bear on this issue, but they present difficulties because of the need for end-to-end differentiability. We review developments in AI and machine learning that could facilitate their adoption.
Abstract:In August of 2021, the Santa Fe Institute hosted a workshop on collective intelligence as part of its Foundations of Intelligence project. This project seeks to advance the field of artificial intelligence by promoting interdisciplinary research on the nature of intelligence. The workshop brought together computer scientists, biologists, philosophers, social scientists, and others to share their insights about how intelligence can emerge from interactions among multiple agents--whether those agents be machines, animals, or human beings. In this report, we summarize each of the talks and the subsequent discussions. We also draw out a number of key themes and identify important frontiers for future research.
Abstract:In July of 2021, the Santa Fe Institute hosted a workshop on evolutionary computation as part of its Foundations of Intelligence in Natural and Artificial Systems project. This project seeks to advance the field of artificial intelligence by promoting interdisciplinary research on the nature of intelligence. The workshop brought together computer scientists and biologists to share their insights about the nature of evolution and the future of evolutionary computation. In this report, we summarize each of the talks and the subsequent discussions. We also draw out a number of key themes and identify important frontiers for future research.
Abstract:Adversarial examples for neural network image classifiers are known to be transferable: examples optimized to be misclassified by a source classifier are often misclassified as well by classifiers with different architectures. However, targeted adversarial examples -- optimized to be classified as a chosen target class -- tend to be less transferable between architectures. While prior research on constructing transferable targeted attacks has focused on improving the optimization procedure, in this work we examine the role of the source classifier. Here, we show that training the source classifier to be "slightly robust" -- that is, robust to small-magnitude adversarial examples -- substantially improves the transferability of targeted attacks, even between architectures as different as convolutional neural networks and transformers. We argue that this result supports a non-intuitive hypothesis: on the spectrum from non-robust (standard) to highly robust classifiers, those that are only slightly robust exhibit the most universal features -- ones that tend to overlap with the features learned by other classifiers trained on the same dataset. The results we present provide insight into the nature of adversarial examples as well as the mechanisms underlying so-called "robust" classifiers.
Abstract:In March of 2021, the Santa Fe Institute hosted a workshop as part of its Foundations of Intelligence in Natural and Artificial Systems project. This project seeks to advance the field of artificial intelligence by promoting interdisciplinary research on the nature of intelligence. During the workshop, speakers from diverse disciplines gathered to develop a taxonomy of intelligence, articulating their own understanding of intelligence and how their research has furthered that understanding. In this report, we summarize the insights offered by each speaker and identify the themes that emerged during the talks and subsequent discussions.
Abstract:Since its beginning in the 1950s, the field of artificial intelligence has cycled several times between periods of optimistic predictions and massive investment ("AI spring") and periods of disappointment, loss of confidence, and reduced funding ("AI winter"). Even with today's seemingly fast pace of AI breakthroughs, the development of long-promised technologies such as self-driving cars, housekeeping robots, and conversational companions has turned out to be much harder than many people expected. One reason for these repeating cycles is our limited understanding of the nature and complexity of intelligence itself. In this paper I describe four fallacies in common assumptions made by AI researchers, which can lead to overconfident predictions about the field. I conclude by discussing the open questions spurred by these fallacies, including the age-old challenge of imbuing machines with humanlike common sense.
Abstract:Conceptual abstraction and analogy-making are key abilities underlying humans' abilities to learn, reason, and robustly adapt their knowledge to new domains. Despite of a long history of research on constructing AI systems with these abilities, no current AI system is anywhere close to a capability of forming humanlike abstractions or analogies. This paper reviews the advantages and limitations of several approaches toward this goal, including symbolic methods, deep learning, and probabilistic program induction. The paper concludes with several proposals for designing challenge tasks and evaluation measures in order to make quantifiable and generalizable progress in this area.
Abstract:Neural networks trained on visual data are well-known to be vulnerable to often imperceptible adversarial perturbations. The reasons for this vulnerability are still being debated in the literature. Recently Ilyas et al. (2019) showed that this vulnerability arises, in part, because neural network classifiers rely on highly predictive but brittle "non-robust" features. In this paper we extend the work of Ilyas et al. by investigating the nature of the input patterns that give rise to these features. In particular, we hypothesize that in a neural network trained in a standard way, non-robust features respond to small, "non-semantic" patterns that are typically entangled with larger, robust patterns, known to be more human-interpretable, as opposed to solely responding to statistical artifacts in a dataset. Thus, adversarial examples can be formed via minimal perturbations to these small, entangled patterns. In addition, we demonstrate a corollary of our hypothesis: robust classifiers are more effective than standard (non-robust) ones as a source for generating transferable adversarial examples in both the untargeted and targeted settings. The results we present in this paper provide new insight into the nature of the non-robust features responsible for adversarial vulnerability of neural network classifiers.
Abstract:The history of AI has included several "waves" of ideas. The first wave, from the mid-1950s to the 1980s, focused on logic and symbolic hand-encoded representations of knowledge, the foundations of so-called "expert systems". The second wave, starting in the 1990s, focused on statistics and machine learning, in which, instead of hand-programming rules for behavior, programmers constructed "statistical learning algorithms" that could be trained on large datasets. In the most recent wave research in AI has largely focused on deep (i.e., many-layered) neural networks, which are loosely inspired by the brain and trained by "deep learning" methods. However, while deep neural networks have led to many successes and new capabilities in computer vision, speech recognition, language processing, game-playing, and robotics, their potential for broad application remains limited by several factors. A concerning limitation is that even the most successful of today's AI systems suffer from brittleness-they can fail in unexpected ways when faced with situations that differ sufficiently from ones they have been trained on. This lack of robustness also appears in the vulnerability of AI systems to adversarial attacks, in which an adversary can subtly manipulate data in a way to guarantee a specific wrong answer or action from an AI system. AI systems also can absorb biases-based on gender, race, or other factors-from their training data and further magnify these biases in their subsequent decision-making. Taken together, these various limitations have prevented AI systems such as automatic medical diagnosis or autonomous vehicles from being sufficiently trustworthy for wide deployment. The massive proliferation of AI across society will require radically new ideas to yield technology that will not sacrifice our productivity, our quality of life, or our values.
Abstract:We revisit a particular visual grounding method: the "Image Retrieval Using Scene Graphs" (IRSG) system of Johnson et al. (2015). Our experiments indicate that the system does not effectively use its learned object-relationship models. We also look closely at the IRSG dataset, as well as the widely used Visual Relationship Dataset (VRD) that is adapted from it. We find that these datasets exhibit biases that allow methods that ignore relationships to perform relatively well. We also describe several other problems with the IRSG dataset, and report on experiments using a subset of the dataset in which the biases and other problems are removed. Our studies contribute to a more general effort: that of better understanding what machine learning methods that combine language and vision actually learn and what popular datasets actually test.