IP Paris
Abstract:Scholarly data is growing continuously containing information about the articles from plethora of venues including conferences, journals, etc. Many initiatives have been taken to make scholarly data available in the for of Knowledge Graphs (KGs). These efforts to standardize these data and make them accessible have also lead to many challenges such as exploration of scholarly articles, ambiguous authors, etc. This study more specifically targets the problem of Author Name Disambiguation (AND) on Scholarly KGs and presents a novel framework, Literally Author Name Disambiguation (LAND), which utilizes Knowledge Graph Embeddings (KGEs) using multimodal literal information generated from these KGs. This framework is based on three components: 1) Multimodal KGEs, 2) A blocking procedure, and finally, 3) Hierarchical Agglomerative Clustering. Extensive experiments have been conducted on two newly created KGs: (i) KG containing information from Scientometrics Journal from 1978 onwards (OC-782K), and (ii) a KG extracted from a well-known benchmark for AND provided by AMiner (AMiner-534K). The results show that our proposed architecture outperforms our baselines of 8-14\% in terms of F$_1$ score and shows competitive performances on a challenging benchmark such as AMiner. The code and the datasets are publicly available through Github (https://github.com/sntcristian/and-kge) and Zenodo (https://zenodo.org/record/5675787\#.YcCJzL3MJTY) respectively.
Abstract:State-of-the-art approaches for metaphor detection compare their literal - or core - meaning and their contextual meaning using sequential metaphor classifiers based on neural networks. The signal that represents the literal meaning is often represented by (non-contextual) word embeddings. However, metaphorical expressions evolve over time due to various reasons, such as cultural and societal impact. Metaphorical expressions are known to co-evolve with language and literal word meanings, and even drive, to some extent, this evolution. This rises the question whether different, possibly time-specific, representations of literal meanings may impact on the metaphor detection task. To the best of our knowledge, this is the first study which examines the metaphor detection task with a detailed exploratory analysis where different temporal and static word embeddings are used to account for different representations of literal meanings. Our experimental analysis is based on three popular benchmarks used for metaphor detection and word embeddings extracted from different corpora and temporally aligned to different state-of-the-art approaches. The results suggest that different word embeddings do impact on the metaphor detection task and some temporal word embeddings slightly outperform static methods on some performance measures. However, results also suggest that temporal word embeddings may provide representations of words' core meaning even too close to their metaphorical meaning, thus confusing the classifier. Overall, the interaction between temporal language evolution and metaphor detection appears tiny in the benchmark datasets used in our experiments. This suggests that future work for the computational analysis of this important linguistic phenomenon should first start by creating a new dataset where this interaction is better represented.
Abstract:With the increasing trend in the topic of migration in Europe, the public is now more engaged in expressing their opinions through various platforms such as Twitter. Understanding the online discourses is therefore essential to capture the public opinion. The goal of this study is the analysis of social media platform to quantify public attitudes towards migrations and the identification of different factors causing these attitudes. The tweets spanning from 2013 to Jul-2021 in the European countries which are hosts to immigrants are collected, pre-processed, and filtered using advanced topic modeling technique. BERT-based entity linking and sentiment analysis, and attention-based hate speech detection are performed to annotate the curated tweets. Moreover, the external databases are used to identify the potential social and economic factors causing negative attitudes of the people about migration. To further promote research in the interdisciplinary fields of social science and computer science, the outcomes are integrated into a Knowledge Base (KB), i.e., MigrationsKB which significantly extends the existing models to take into account the public attitudes towards migrations and the economic indicators. This KB is made public using FAIR principles, which can be queried through SPARQL endpoint. Data dumps are made available on Zenodo.
Abstract:Open Knowledge Graphs (such as DBpedia, Wikidata, YAGO) have been recognized as the backbone of diverse applications in the field of data mining and information retrieval. Hence, the completeness and correctness of the Knowledge Graphs (KGs) are vital. Most of these KGs are mostly created either via an automated information extraction from Wikipedia snapshots or information accumulation provided by the users or using heuristics. However, it has been observed that the type information of these KGs is often noisy, incomplete, and incorrect. To deal with this problem a multi-label classification approach is proposed in this work for entity typing using KG embeddings. We compare our approach with the current state-of-the-art type prediction method and report on experiments with the KGs.
Abstract:Most Knowledge Graphs (KGs) contain textual descriptions of entities in various natural languages. These descriptions of entities provide valuable information that may not be explicitly represented in the structured part of the KG. Based on this fact, some link prediction methods which make use of the information presented in the textual descriptions of entities have been proposed to learn representations of (monolingual) KGs. However, these methods use entity descriptions in only one language and ignore the fact that descriptions given in different languages may provide complementary information and thereby also additional semantics. In this position paper, the problem of effectively leveraging multilingual entity descriptions for the purpose of link prediction in KGs will be discussed along with potential solutions to the problem.
Abstract:Representation Learning of words and Knowledge Graphs (KG) into low dimensional vector spaces along with its applications to many real-world scenarios have recently gained momentum. In order to make use of multiple KG embeddings for knowledge-driven applications such as question answering, named entity disambiguation, knowledge graph completion, etc., alignment of different KG embedding spaces is necessary. In addition to multilinguality and domain-specific information, different KGs pose the problem of structural differences making the alignment of the KG embeddings more challenging. This paper provides a theoretical analysis and comparison of the state-of-the-art alignment methods between two embedding spaces representing entity-entity and entity-word. This paper also aims at assessing the capability and short-comings of the existing alignment methods on the pretext of different applications.
Abstract:Knowledge Graphs (KGs) are composed of structured information about a particular domain in the form of entities and relations. In addition to the structured information KGs help in facilitating interconnectivity and interoperability between different resources represented in the Linked Data Cloud. KGs have been used in a variety of applications such as entity linking, question answering, recommender systems, etc. However, KG applications suffer from high computational and storage costs. Hence, there arises the necessity for a representation able to map the high dimensional KGs into low dimensional spaces, i.e., embedding space, preserving structural as well as relational information. This paper conducts a survey of KG embedding models which not only consider the structured information contained in the form of entities and relations in a KG but also the unstructured information represented as literals such as text, numerical values, images, etc. Along with a theoretical analysis and comparison of the methods proposed so far for generating KG embeddings with literals, an empirical evaluation of the different methods under identical settings has been performed for the general task of link prediction.
Abstract:This paper introduces TakeFive, a new semantic role labeling method that transforms a text into a frame-oriented knowledge graph. It performs dependency parsing, identifies the words that evoke lexical frames, locates the roles and fillers for each frame, runs coercion techniques, and formalises the results as a knowledge graph. This formal representation complies with the frame semantics used in Framester, a factual-linguistic linked data resource. The obtained precision, recall and F1 values indicate that TakeFive is competitive with other existing methods such as SEMAFOR, Pikes, PathLSTM and FRED. We finally discuss how to combine TakeFive and FRED, obtaining higher values of precision, recall and F1.
Abstract:This paper presents Amnestic Forgery, an ontology for metaphor semantics, based on MetaNet, which is inspired by the theory of Conceptual Metaphor. Amnestic Forgery reuses and extends the Framester schema, as an ideal ontology design framework to deal with both semiotic and referential aspects of frames, roles, mappings, and eventually blending. The description of the resource is supplied by a discussion of its applications, with examples taken from metaphor generation, and the referential problems of metaphoric mappings. Both schema and data are available from the Framester SPARQL endpoint.