Abstract:Swarming systems, such as for example multi-drone networks, excel at cooperative tasks like monitoring, surveillance, or disaster assistance in critical environments, where autonomous agents make decentralized decisions in order to fulfill team-level objectives in a robust and efficient manner. Unfortunately, team-level coordinated strategies in the wild are vulnerable to data poisoning attacks, resulting in either inaccurate coordination or adversarial behavior among the agents. To address this challenge, we contribute a framework that investigates the effects of such data poisoning attacks, using explainable AI methods. We model the interaction among agents using evolutionary intelligence, where an optimal coalition strategically emerges to perform coordinated tasks. Then, through a rigorous evaluation, the swarm model is systematically poisoned using data manipulation attacks. We showcase the applicability of explainable AI methods to quantify the effects of poisoning on the team strategy and extract footprint characterizations that enable diagnosing. Our findings indicate that when the model is poisoned above 10%, non-optimal strategies resulting in inefficient cooperation can be identified.
Abstract:In this work, we present a novel approach to multi-label chest X-ray (CXR) image classification that enhances clinical interpretability while maintaining a streamlined, single-model, single-run training pipeline. Leveraging the CheXpert dataset and VisualCheXbert-derived labels, we incorporate hierarchical label groupings to capture clinically meaningful relationships between diagnoses. To achieve this, we designed a custom hierarchical binary cross-entropy (HBCE) loss function that enforces label dependencies using either fixed or data-driven penalty types. Our model achieved a mean area under the receiver operating characteristic curve (AUROC) of 0.903 on the test set. Additionally, we provide visual explanations and uncertainty estimations to further enhance model interpretability. All code, model configurations, and experiment details are made available.