Abstract:Clustered Federated Learning (CFL) has emerged as a powerful approach for addressing data heterogeneity and ensuring privacy in large distributed IoT environments. By clustering clients and training cluster-specific models, CFL enables personalized models tailored to groups of heterogeneous clients. However, conventional CFL approaches suffer from fragmented learning for training independent global models for each cluster and fail to take advantage of collective cluster insights. This paper advocates a shift to hierarchical CFL, allowing bi-level aggregation to train cluster-specific models at the edge and a unified global model at the cloud. This shift improves training efficiency yet might introduce communication challenges. To this end, we propose CFLHKD, a novel personalization scheme for integrating hierarchical cluster knowledge into CFL. Built upon multi-teacher knowledge distillation, CFLHKD enables inter-cluster knowledge sharing while preserving cluster-specific personalization. CFLHKD adopts a bi-level aggregation to bridge the gap between local and global learning. Extensive evaluations of standard benchmark datasets demonstrate that CFLHKD outperforms representative baselines in cluster-specific and global model accuracy and achieves a performance improvement of 3.32-7.57\%.
Abstract:In recent years, Edge AI has become more prevalent with applications across various industries, from environmental monitoring to smart city management. Edge AI facilitates the processing of Internet of Things (IoT) data and provides privacy-enabled and latency-sensitive services to application users using Machine Learning (ML) algorithms, e.g., Time Series Classification (TSC). However, existing TSC algorithms require access to full raw data and demand substantial computing resources to train and use them effectively in runtime. This makes them impractical for deployment in resource-constrained Edge environments. To address this, in this paper, we propose an Adaptive Brownian Bridge-based Symbolic Aggregation Vector Space Model (ABBA-VSM). It is a new TSC model designed for classification services on Edge. Here, we first adaptively compress the raw time series into symbolic representations, thus capturing the changing trends of data. Subsequently, we train the classification model directly on these symbols. ABBA-VSM reduces communication data between IoT and Edge devices, as well as computation cycles, in the development of resource-efficient TSC services on Edge. We evaluate our solution with extensive experiments using datasets from the UCR time series classification archive. The results demonstrate that the ABBA-VSM achieves up to 80% compression ratio and 90-100% accuracy for binary classification. Whereas, for non-binary classification, it achieves an average compression ratio of 60% and accuracy ranging from 60-80%.