Abstract:In Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS), a model is trained on labeled source domain data (e.g., synthetic images) and adapted to an unlabeled target domain (e.g., real-world images) without access to target annotations. Existing UDA-SS methods often struggle to balance fine-grained local details with global contextual information, leading to segmentation errors in complex regions. To address this, we introduce the Adaptive Feature Refinement (AFR) module, which enhances segmentation accuracy by refining highresolution features using semantic priors from low-resolution logits. AFR also integrates high-frequency components, which capture fine-grained structures and provide crucial boundary information, improving object delineation. Additionally, AFR adaptively balances local and global information through uncertaintydriven attention, reducing misclassifications. Its lightweight design allows seamless integration into HRDA-based UDA methods, leading to state-of-the-art segmentation performance. Our approach improves existing UDA-SS methods by 1.05% mIoU on GTA V --> Cityscapes and 1.04% mIoU on Synthia-->Cityscapes. The implementation of our framework is available at: https://github.com/Masrur02/AFRDA
Abstract:Viruses are submicroscopic agents that can infect all kinds of lifeforms and use their hosts' living cells to replicate themselves. Despite having some of the simplest genetic structures among all living beings, viruses are highly adaptable, resilient, and given the right conditions, are capable of causing unforeseen complications in their hosts' bodies. Due to their multiple transmission pathways, high contagion rate, and lethality, viruses are the biggest biological threat faced by animal and plant species. It is often challenging to promptly detect the presence of a virus in a possible host's body and accurately determine its type using manual examination techniques; however, it can be done using computer-based automatic diagnosis methods. Most notably, the analysis of Transmission Electron Microscopy (TEM) images has been proven to be quite successful in instant virus identification. Using TEM images collected from a recently published dataset, this article proposes a deep learning-based classification model to identify the type of virus within those images correctly. The methodology of this study includes two coherent image processing techniques to reduce the noise present in the raw microscopy images. Experimental results show that it can differentiate among the 14 types of viruses present in the dataset with a maximum of 97.44% classification accuracy and F1-score, which asserts the effectiveness and reliability of the proposed method. Implementing this scheme will impart a fast and dependable way of virus identification subsidiary to the thorough diagnostic procedures.