Abstract:Colorectal cancer (CRC) grading is a critical prognostic factor but remains hampered by inter-observer variability and the privacy constraints of multi-institutional data sharing. While deep learning offers a path to automation, centralized training models conflict with data governance regulations and neglect the diagnostic importance of multi-scale analysis. In this work, we propose a scalable, privacy-preserving federated learning (FL) framework for CRC histopathological grading that integrates multi-scale feature learning within a distributed training paradigm. Our approach employs a dual-stream ResNetRS50 backbone to concurrently capture fine-grained nuclear detail and broader tissue-level context. This architecture is integrated into a robust FL system stabilized using FedProx to mitigate client drift across heterogeneous data distributions from multiple hospitals. Extensive evaluation on the CRC-HGD dataset demonstrates that our framework achieves an overall accuracy of 83.5%, outperforming a comparable centralized model (81.6%). Crucially, the system excels in identifying the most aggressive Grade III tumors with a high recall of 87.5%, a key clinical priority to prevent dangerous false negatives. Performance further improves with higher magnification, reaching 88.0% accuracy at 40x. These results validate that our federated multi-scale approach not only preserves patient privacy but also enhances model performance and generalization. The proposed modular pipeline, with built-in preprocessing, checkpointing, and error handling, establishes a foundational step toward deployable, privacy-aware clinical AI for digital pathology.




Abstract:Class imbalance is a pervasive issue in the field of disease classification from medical images. It is necessary to balance out the class distribution while training a model for decent results. However, in the case of rare medical diseases, images from affected patients are much harder to come by compared to images from non-affected patients, resulting in unwanted class imbalance. Various processes of tackling class imbalance issues have been explored so far, each having its fair share of drawbacks. In this research, we propose an outlier detection based binary medical image classification technique which can handle even the most extreme case of class imbalance. We have utilized a dataset of malaria parasitized and uninfected cells. An autoencoder model titled AnoMalNet is trained with only the uninfected cell images at the beginning and then used to classify both the affected and non-affected cell images by thresholding a loss value. We have achieved an accuracy, precision, recall, and F1 score of 98.49%, 97.07%, 100%, and 98.52% respectively, performing better than large deep learning models and other published works. As our proposed approach can provide competitive results without needing the disease-positive samples during training, it should prove to be useful in binary disease classification on imbalanced datasets.