Abstract:This study presents QuanvNeXt, an end-to-end fully quanvolutional model for EEG-based depression diagnosis. QuanvNeXt incorporates a novel Cross Residual block, which reduces feature homogeneity and strengthens cross-feature relationships while retaining parameter efficiency. We evaluated QuanvNeXt on two open-source datasets, where it achieved an average accuracy of 93.1% and an average AUC-ROC of 97.2%, outperforming state-of-the-art baselines such as InceptionTime (91.7% accuracy, 95.9% AUC-ROC). An uncertainty analysis across Gaussian noise levels demonstrated well-calibrated predictions, with ECE scores remaining low (0.0436, Dataset 1) to moderate (0.1159, Dataset 2) even at the highest perturbation (ε = 0.1). Additionally, a post-hoc explainable AI analysis confirmed that QuanvNeXt effectively identifies and learns spectrotemporal patterns that distinguish between healthy controls and major depressive disorder. Overall, QuanvNeXt establishes an efficient and reliable approach for EEG-based depression diagnosis.



Abstract:Machine learning models have the potential to identify cardiovascular diseases (CVDs) early and accurately in primary healthcare settings, which is crucial for delivering timely treatment and management. Although population-based CVD risk models have been used traditionally, these models often do not consider variations in lifestyles, socioeconomic conditions, or genetic predispositions. Therefore, we aimed to develop machine learning models for CVD detection using primary healthcare data, compare the performance of different models, and identify the best models. We used data from the UK Biobank study, which included over 500,000 middle-aged participants from different primary healthcare centers in the UK. Data collected at baseline (2006--2010) and during imaging visits after 2014 were used in this study. Baseline characteristics, including sex, age, and the Townsend Deprivation Index, were included. Participants were classified as having CVD if they reported at least one of the following conditions: heart attack, angina, stroke, or high blood pressure. Cardiac imaging data such as electrocardiogram and echocardiography data, including left ventricular size and function, cardiac output, and stroke volume, were also used. We used 9 machine learning models (LSVM, RBFSVM, GP, DT, RF, NN, AdaBoost, NB, and QDA), which are explainable and easily interpretable. We reported the accuracy, precision, recall, and F-1 scores; confusion matrices; and area under the curve (AUC) curves.