Abstract:Across various sectors applications of eXplainableAI (XAI) gained momentum as the increasing black-boxedness of prevailing Machine Learning (ML) models became apparent. In parallel, Large Language Models (LLMs) significantly developed in their abilities to understand human language and complex patterns. By combining both, this paper presents a novel reference architecture for the interpretation of XAI through an interactive chatbot powered by a fine-tuned LLM. We instantiate the reference architecture in the context of State-of-Health (SoH) prediction for batteries and validate its design in multiple evaluation and demonstration rounds. The evaluation indicates that the implemented prototype enhances the human interpretability of ML, especially for users with less experience with XAI.
Abstract:The rapid development of cutting-edge technologies, the increasing volume of data and also the availability and processability of new types of data sources has led to a paradigm shift in data-based management and decision-making. Since business processes are at the core of organizational work, these developments heavily impact BPM as a crucial success factor for organizations. In view of this emerging potential, data-driven business process management has become a relevant and vibrant research area. Given the complexity and interdisciplinarity of the research field, this position paper therefore presents research insights regarding data-driven BPM.
Abstract:Process mining is one of the most active research streams in business process management. In recent years, numerous methods have been proposed for analyzing structured process data. Yet, in many cases, it is only the digitized parts of processes that are directly captured from process-aware information systems, and manual activities often result in blind spots. While the use of video cameras to observe these activities could help to fill this gap, a standardized approach to extracting event logs from unstructured video data remains lacking. Here, we propose a reference architecture to bridge the gap between computer vision and process mining. Various evaluation activities (i.e., competing artifact analysis, prototyping, and real-world application) ensured that the proposed reference architecture allows flexible, use-case-driven, and context-specific instantiations. Our results also show that an exemplary software prototype instantiation of the proposed reference architecture is capable of automatically extracting most of the process-relevant events from unstructured video data.