Abstract:Schedulers are critical for optimal resource utilization in high-performance computing. Traditional methods to evaluate schedulers are limited to post-deployment analysis, or simulators, which do not model associated infrastructure. In this work, we present the first-of-its-kind integration of scheduling and digital twins in HPC. This enables what-if studies to understand the impact of parameter configurations and scheduling decisions on the physical assets, even before deployment, or regarching changes not easily realizable in production. We (1) provide the first digital twin framework extended with scheduling capabilities, (2) integrate various top-tier HPC systems given their publicly available datasets, (3) implement extensions to integrate external scheduling simulators. Finally, we show how to (4) implement and evaluate incentive structures, as-well-as (5) evaluate machine learning based scheduling, in such novel digital-twin based meta-framework to prototype scheduling. Our work enables what-if scenarios of HPC systems to evaluate sustainability, and the impact on the simulated system.
Abstract:With the end of Moore's law and Dennard scaling, efficient training increasingly requires rethinking data volume. Can we train better models with significantly less data via intelligent subsampling? To explore this, we develop SICKLE, a sparse intelligent curation framework for efficient learning, featuring a novel maximum entropy (MaxEnt) sampling approach, scalable training, and energy benchmarking. We compare MaxEnt with random and phase-space sampling on large direct numerical simulation (DNS) datasets of turbulence. Evaluating SICKLE at scale on Frontier, we show that subsampling as a preprocessing step can improve model accuracy and substantially lower energy consumption, with reductions of up to 38x observed in certain cases.
Abstract:We present ExaDigiT, an open-source framework for developing comprehensive digital twins of liquid-cooled supercomputers. It integrates three main modules: (1) a resource allocator and power simulator, (2) a transient thermo-fluidic cooling model, and (3) an augmented reality model of the supercomputer and central energy plant. The framework enables the study of "what-if" scenarios, system optimizations, and virtual prototyping of future systems. Using Frontier as a case study, we demonstrate the framework's capabilities by replaying six months of system telemetry for systematic verification and validation. Such a comprehensive analysis of a liquid-cooled exascale supercomputer is the first of its kind. ExaDigiT elucidates complex transient cooling system dynamics, runs synthetic or real workloads, and predicts energy losses due to rectification and voltage conversion. Throughout our paper, we present lessons learned to benefit HPC practitioners developing similar digital twins. We envision the digital twin will be a key enabler for sustainable, energy-efficient supercomputing.