Abstract:Text-to-image (T2I) diffusion models have made remarkable strides in generating and editing high-fidelity images from text. Yet, these models remain fundamentally generic, failing to adapt to the nuanced aesthetic preferences of individual users. In this work, we present the first framework for personalized image editing in diffusion models, introducing Collaborative Direct Preference Optimization (C-DPO), a novel method that aligns image edits with user-specific preferences while leveraging collaborative signals from like-minded individuals. Our approach encodes each user as a node in a dynamic preference graph and learns embeddings via a lightweight graph neural network, enabling information sharing across users with overlapping visual tastes. We enhance a diffusion model's editing capabilities by integrating these personalized embeddings into a novel DPO objective, which jointly optimizes for individual alignment and neighborhood coherence. Comprehensive experiments, including user studies and quantitative benchmarks, demonstrate that our method consistently outperforms baselines in generating edits that are aligned with user preferences.




Abstract:Text-to-image models are becoming increasingly popular, revolutionizing the landscape of digital art creation by enabling highly detailed and creative visual content generation. These models have been widely employed across various domains, particularly in art generation, where they facilitate a broad spectrum of creative expression and democratize access to artistic creation. In this paper, we introduce \texttt{STYLEBREEDER}, a comprehensive dataset of 6.8M images and 1.8M prompts generated by 95K users on Artbreeder, a platform that has emerged as a significant hub for creative exploration with over 13M users. We introduce a series of tasks with this dataset aimed at identifying diverse artistic styles, generating personalized content, and recommending styles based on user interests. By documenting unique, user-generated styles that transcend conventional categories like 'cyberpunk' or 'Picasso,' we explore the potential for unique, crowd-sourced styles that could provide deep insights into the collective creative psyche of users worldwide. We also evaluate different personalization methods to enhance artistic expression and introduce a style atlas, making these models available in LoRA format for public use. Our research demonstrates the potential of text-to-image diffusion models to uncover and promote unique artistic expressions, further democratizing AI in art and fostering a more diverse and inclusive artistic community. The dataset, code and models are available at https://stylebreeder.github.io under a Public Domain (CC0) license.