Abstract:We present an approach to accurately estimate high fidelity markerless 3D pose and volumetric reconstruction of human performance using only a small set of camera views ($\sim 2$). Our method utilises a dual loss in a generative adversarial network that can yield improved performance in both reconstruction and pose estimate error. We use a deep prior implicitly learnt by the network trained over a dataset of view-ablated multi-view video footage of a wide range of subjects and actions. Uniquely we use a multi-channel symmetric 3D convolutional encoder-decoder with a dual loss to enforce the learning of a latent embedding that enforces skeletal joint positions and a deep volumetric reconstruction of the performer. An extensive evaluation is performed with state of the art performance reported on three datasets; Human 3.6M, TotalCapture and TotalCaptureOutdoor. The method opens the possibility of high-end volumetric and pose performance capture in on-set and prosumer scenarios where time or cost prohibit a high witness camera count.
Abstract:We present a method for simultaneously estimating 3D human pose and body shape from a sparse set of wide-baseline camera views. We train a symmetric convolutional autoencoder with a dual loss that enforces learning of a latent representation that encodes skeletal joint positions, and at the same time learns a deep representation of volumetric body shape. We harness the latter to up-scale input volumetric data by a factor of $4 \times$, whilst recovering a 3D estimate of joint positions with equal or greater accuracy than the state of the art. Inference runs in real-time (25 fps) and has the potential for passive human behaviour monitoring where there is a requirement for high fidelity estimation of human body shape and pose.