Abstract:Due to rapid population growth globally, digitally-enabled agricultural sectors are crucial for sustainable food production and making informed decisions about resource management for farmers and various stakeholders. The deployment of Internet of Things (IoT) technologies that collect real-time observations of various environmental (e.g., temperature, humidity, etc.) and operational factors (e.g., irrigation) influencing production is often seen as a critical step to enable additional novel downstream tasks, such as AI-based yield forecasting. However, since AI models require large amounts of data, this creates practical challenges in a real-world dynamic farm setting where IoT observations would need to be collected over a number of seasons. In this study, we deployed IoT sensors in strawberry production polytunnels for two growing seasons to collect environmental data, including water usage, external and internal temperature, external and internal humidity, soil moisture, soil temperature, and photosynthetically active radiation. The sensor observations were combined with manually provided yield records spanning a period of four seasons. To bridge the gap of missing IoT observations for two additional seasons, we propose an AI-based backcasting approach to generate synthetic sensor observations using historical weather data from a nearby weather station and the existing polytunnel observations. We built an AI-based yield forecasting model to evaluate our approach using the combination of real and synthetic observations. Our results demonstrated that incorporating synthetic data improved yield forecasting accuracy, with models incorporating synthetic data outperforming those trained only on historical yield, weather records, and real sensor data.