Abstract:Coordinated online behavior, which spans from beneficial collective actions to harmful manipulation such as disinformation campaigns, has become a key focus in digital ecosystem analysis. Traditional methods often rely on monomodal approaches, focusing on single types of interactions like co-retweets or co-hashtags, or consider multiple modalities independently of each other. However, these approaches may overlook the complex dynamics inherent in multimodal coordination. This study compares different ways of operationalizing the detection of multimodal coordinated behavior. It examines the trade-off between weakly and strongly integrated multimodal models, highlighting the balance between capturing broader coordination patterns and identifying tightly coordinated behavior. By comparing monomodal and multimodal approaches, we assess the unique contributions of different data modalities and explore how varying implementations of multimodality impact detection outcomes. Our findings reveal that not all the modalities provide distinct insights, but that with a multimodal approach we can get a more comprehensive understanding of coordination dynamics. This work enhances the ability to detect and analyze coordinated online behavior, offering new perspectives for safeguarding the integrity of digital platforms.
Abstract:Political scientists are increasingly interested in analyzing visual content at scale. However, the existing computational toolbox is still in need of methods and models attuned to the specific challenges and goals of social and political inquiry. In this article, we introduce a visual Structural Topic Model (vSTM) that combines pretrained image embeddings with a structural topic model. This has important advantages compared to existing approaches. First, pretrained embeddings allow the model to capture the semantic complexity of images relevant to political contexts. Second, the structural topic model provides the ability to analyze how topics and covariates are related, while maintaining a nuanced representation of images as a mixture of multiple topics. In our empirical application, we show that the vSTM is able to identify topics that are interpretable, coherent, and substantively relevant to the study of online political communication.