Terra Quantum AG
Abstract:High-fidelity simulations of laser welding capture complex thermo-fluid phenomena, including phase change, free-surface deformation, and keyhole dynamics, however their computational cost limits large-scale process exploration and real-time use. In this work we present the Laser Processing Fourier Neural Operator (LP-FNO), a Fourier Neural Operator (FNO) based surrogate model that learns the parametric solution operator of various laser processes from multiphysics simulations generated with FLOW-3D WELD (registered trademark). Through a novel approach of reformulating the transient problem in the moving laser frame and applying temporal averaging, the system results in a quasi-steady state setting suitable for operator learning, even in the keyhole welding regime. The proposed LP-FNO maps process parameters to three-dimensional temperature fields and melt-pool boundaries across a broad process window spanning conduction and keyhole regimes using the non-dimensional normalized enthalpy formulation. The model achieves temperature prediction errors on the order of 1% and intersection-over-union scores for melt-pool segmentation over 0.9. We demonstrate that a LP-FNO model trained on coarse-resolution data can be evaluated on finer grids, yielding accurate super-resolved predictions in mesh-converged conduction regimes, whereas discrepancies in keyhole regimes reflect unresolved dynamics in the coarse-mesh training data. These results indicate that the LP-FNO provides an efficient surrogate modeling framework for laser welding, enabling prediction of full three-dimensional fields and phase interfaces over wide parameter ranges in just tens of milliseconds, up to a hundred thousand times faster than traditional Finite Volume multi-physics software.
Abstract:Hardware-efficient circuits employed in Quantum Machine Learning are typically composed of alternating layers of uniformly applied gates. High-speed numerical simulators for such circuits are crucial for advancing research in this field. In this work, we numerically benchmark universal and gate-specific techniques for simulating the action of layers of gates on quantum state vectors, aiming to accelerate the overall simulation of Quantum Machine Learning algorithms. Our analysis shows that the optimal simulation method for a given layer of gates depends on the number of qubits involved, and that a tailored combination of techniques can yield substantial performance gains in the forward and backward passes for a given circuit. Building on these insights, we developed a numerical simulator, named TQml Simulator, that employs the most efficient simulation method for each layer in a given circuit. We evaluated TQml Simulator on circuits constructed from standard gate sets, such as rotations and CNOTs, as well as on native gates from IonQ and IBM quantum processing units. In most cases, our simulator outperforms equivalent Pennylane's default_qubit simulator by up to a factor of 10, depending on the circuit, the number of qubits, the batch size of the input data, and the hardware used.