Abstract:Hardware-efficient circuits employed in Quantum Machine Learning are typically composed of alternating layers of uniformly applied gates. High-speed numerical simulators for such circuits are crucial for advancing research in this field. In this work, we numerically benchmark universal and gate-specific techniques for simulating the action of layers of gates on quantum state vectors, aiming to accelerate the overall simulation of Quantum Machine Learning algorithms. Our analysis shows that the optimal simulation method for a given layer of gates depends on the number of qubits involved, and that a tailored combination of techniques can yield substantial performance gains in the forward and backward passes for a given circuit. Building on these insights, we developed a numerical simulator, named TQml Simulator, that employs the most efficient simulation method for each layer in a given circuit. We evaluated TQml Simulator on circuits constructed from standard gate sets, such as rotations and CNOTs, as well as on native gates from IonQ and IBM quantum processing units. In most cases, our simulator outperforms equivalent Pennylane's default_qubit simulator by up to a factor of 10, depending on the circuit, the number of qubits, the batch size of the input data, and the hardware used.
Abstract:Managing the response to natural disasters effectively can considerably mitigate their devastating impact. This work explores the potential of using supervised hybrid quantum machine learning to optimize emergency evacuation plans for cars during natural disasters. The study focuses on earthquake emergencies and models the problem as a dynamic computational graph where an earthquake damages an area of a city. The residents seek to evacuate the city by reaching the exit points where traffic congestion occurs. The situation is modeled as a shortest-path problem on an uncertain and dynamically evolving map. We propose a novel hybrid supervised learning approach and test it on hypothetical situations on a concrete city graph. This approach uses a novel quantum feature-wise linear modulation (FiLM) neural network parallel to a classical FiLM network to imitate Dijkstra's node-wise shortest path algorithm on a deterministic dynamic graph. Adding the quantum neural network in parallel increases the overall model's expressivity by splitting the dataset's harmonic and non-harmonic features between the quantum and classical components. The hybrid supervised learning agent is trained on a dataset of Dijkstra's shortest paths and can successfully learn the navigation task. The hybrid quantum network improves over the purely classical supervised learning approach by 7% in accuracy. We show that the quantum part has a significant contribution of 45.(3)% to the prediction and that the network could be executed on an ion-based quantum computer. The results demonstrate the potential of supervised hybrid quantum machine learning in improving emergency evacuation planning during natural disasters.