Abstract:Location information serves as the fundamental element for numerous Internet of Things (IoT) applications. Traditional indoor localization techniques often produce significant errors and raise privacy concerns due to centralized data collection. In response, Machine Learning (ML) techniques offer promising solutions by capturing indoor environment variations. However, they typically require central data aggregation, leading to privacy, bandwidth, and server reliability issues. To overcome these challenges, in this paper, we propose a Federated Learning (FL)-based approach for dynamic indoor localization using a Deep Neural Network (DNN) model. Experimental results show that FL has the nearby performance to Centralized Model (CL) while keeping the data privacy, bandwidth efficiency and server reliability. This research demonstrates that our proposed FL approach provides a viable solution for privacy-enhanced indoor localization, paving the way for advancements in secure and efficient indoor localization systems.
Abstract:Accurate indoor localization is crucial in industrial environments. Visible Light Communication (VLC) has emerged as a promising solution, offering high accuracy, energy efficiency, and minimal electromagnetic interference. However, VLC-based indoor localization faces challenges due to environmental variability, such as lighting fluctuations and obstacles. To address these challenges, we propose a Transfer Learning (TL)-based approach for VLC-based indoor localization. Using real-world data collected at a BOSCH factory, the TL framework integrates a deep neural network (DNN) to improve localization accuracy by 47\%, reduce energy consumption by 32\%, and decrease computational time by 40\% compared to the conventional models. The proposed solution is highly adaptable under varying environmental conditions and achieves similar accuracy with only 30\% of the dataset, making it a cost-efficient and scalable option for industrial applications in Industry 4.0.