Abstract:While gesture recognition using vision or robot skins is an active research area in Human-Robot Collaboration (HRC), this paper explores deep learning methods relying solely on a robot's built-in joint sensors, eliminating the need for external sensors. We evaluated various convolutional neural network (CNN) architectures and collected two datasets to study the impact of data representation and model architecture on the recognition accuracy. Our results show that spectrogram-based representations significantly improve accuracy, while model architecture plays a smaller role. We also tested generalization to new robot poses, where spectrogram-based models performed better. Implemented on a Franka Emika Research robot, two of our methods, STFT2DCNN and STT3DCNN, achieved over 95% accuracy in contact detection and gesture classification. These findings demonstrate the feasibility of external-sensor-free tactile recognition and promote further research toward cost-effective, scalable solutions for HRC.
Abstract:Direct physical interaction with robots is becoming increasingly important in flexible production scenarios, but robots without protective fences also pose a greater risk to the operator. In order to keep the risk potential low, relatively simple measures are prescribed for operation, such as stopping the robot if there is physical contact or if a safety distance is violated. Although human injuries can be largely avoided in this way, all such solutions have in common that real cooperation between humans and robots is hardly possible and therefore the advantages of working with such systems cannot develop its full potential. In human-robot collaboration scenarios, more sophisticated solutions are required that make it possible to adapt the robot's behavior to the operator and/or the current situation. Most importantly, during free robot movement, physical contact must be allowed for meaningful interaction and not recognized as a collision. However, here lies a key challenge for future systems: detecting human contact by using robot proprioception and machine learning algorithms. This work uses the Deep Metric Learning (DML) approach to distinguish between non-contact robot movement, intentional contact aimed at physical human-robot interaction, and collision situations. The achieved results are promising and show show that DML achieves 98.6\% accuracy, which is 4\% higher than the existing standards (i.e. a deep learning network trained without DML). It also indicates a promising generalization capability for easy portability to other robots (target robots) by detecting contact (distinguishing between contactless and intentional or accidental contact) without having to retrain the model with target robot data.