Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Figures and Tables:

Abstract:Inverse reinforcement learning (IRL) aims to infer a reward from expert demonstrations, motivated by the idea that the reward, rather than the policy, is the most succinct and transferable description of a task [Ng et al., 2000]. However, the reward corresponding to an optimal policy is not unique, making it unclear if an IRL-learned reward is transferable to new transition laws in the sense that its optimal policy aligns with the optimal policy corresponding to the expert's true reward. Past work has addressed this problem only under the assumption of full access to the expert's policy, guaranteeing transferability when learning from two experts with the same reward but different transition laws that satisfy a specific rank condition [Rolland et al., 2022]. In this work, we show that the conditions developed under full access to the expert's policy cannot guarantee transferability in the more practical scenario where we have access only to demonstrations of the expert. Instead of a binary rank condition, we propose principal angles as a more refined measure of similarity and dissimilarity between transition laws. Based on this, we then establish two key results: 1) a sufficient condition for transferability to any transition laws when learning from at least two experts with sufficiently different transition laws, and 2) a sufficient condition for transferability to local changes in the transition law when learning from a single expert. Furthermore, we also provide a probably approximately correct (PAC) algorithm and an end-to-end analysis for learning transferable rewards from demonstrations of multiple experts.

Via

Abstract:Given a dataset of expert demonstrations, inverse reinforcement learning (IRL) aims to recover a reward for which the expert is optimal. This work proposes a model-free algorithm to solve entropy-regularized IRL problem. In particular, we employ a stochastic gradient descent update for the reward and a stochastic soft policy iteration update for the policy. Assuming access to a generative model, we prove that our algorithm is guaranteed to recover a reward for which the expert is $\varepsilon$-optimal using $\mathcal{O}(1/\varepsilon^{2})$ samples of the Markov decision process (MDP). Furthermore, with $\mathcal{O}(1/\varepsilon^{4})$ samples we prove that the optimal policy corresponding to the recovered reward is $\varepsilon$-close to the expert policy in total variation distance.

Via

Abstract:We consider decentralized learning for zero-sum games, where players only see their payoff information and are agnostic to actions and payoffs of the opponent. Previous works demonstrated convergence to a Nash equilibrium in this setting using double time-scale algorithms under strong reachability assumptions. We address the open problem of achieving an approximate Nash equilibrium efficiently with an uncoupled and single time-scale algorithm under weaker conditions. Our contribution is a rational and convergent algorithm, utilizing Tsallis-entropy regularization in a value-iteration-based approach. The algorithm learns an approximate Nash equilibrium in polynomial time, requiring only the existence of a policy pair that induces an irreducible and aperiodic Markov chain, thus considerably weakening past assumptions. Our analysis leverages negative drift inequalities and introduces novel properties of Tsallis entropy that are of independent interest.

Via

Abstract:We consider discounted infinite horizon constrained Markov decision processes (CMDPs) where the goal is to find an optimal policy that maximizes the expected cumulative reward subject to expected cumulative constraints. Motivated by the application of CMDPs in online learning of safety-critical systems, we focus on developing an algorithm that ensures constraint satisfaction during learning. To this end, we develop a zeroth-order interior point approach based on the log barrier function of the CMDP. Under the commonly assumed conditions of Fisher non-degeneracy and bounded transfer error of the policy parameterization, we establish the theoretical properties of the algorithm. In particular, in contrast to existing CMDP approaches that ensure policy feasibility only upon convergence, our algorithm guarantees feasibility of the policies during the learning process and converges to the optimal policy with a sample complexity of $O(\varepsilon^{-6})$. In comparison to the state-of-the-art policy gradient-based algorithm, C-NPG-PDA, our algorithm requires an additional $O(\varepsilon^{-2})$ samples to ensure policy feasibility during learning with same Fisher-non-degenerate parameterization.

Via

Figures and Tables:

Abstract:Two main challenges in Reinforcement Learning (RL) are designing appropriate reward functions and ensuring the safety of the learned policy. To address these challenges, we present a theoretical framework for Inverse Reinforcement Learning (IRL) in constrained Markov decision processes. From a convex-analytic perspective, we extend prior results on reward identifiability and generalizability to both the constrained setting and a more general class of regularizations. In particular, we show that identifiability up to potential shaping (Cao et al., 2021) is a consequence of entropy regularization and may generally no longer hold for other regularizations or in the presence of safety constraints. We also show that to ensure generalizability to new transition laws and constraints, the true reward must be identified up to a constant. Additionally, we derive a finite sample guarantee for the suboptimality of the learned rewards, and validate our results in a gridworld environment.

Via

Figures and Tables:

Abstract:Minimising the longest travel distance for a group of mobile robots with interchangeable goals requires knowledge of the shortest length paths between all robots and goal destinations. Determining the exact length of the shortest paths in an environment with obstacles is challenging and cannot be guaranteed in a finite time. We propose an algorithm in which the accuracy of the path planning is iteratively increased. The approach provides a certificate when the uncertainties on estimates of the shortest paths become small enough to guarantee the optimality of the goal assignment. To this end, we apply results from assignment sensitivity assuming upper and lower bounds on the length of the shortest paths. We then provide polynomial-time methods to find such bounds by applying sampling-based path planning. The upper bounds are given by feasible paths, the lower bounds are obtained by expanding the sample set and leveraging knowledge of the sample dispersion. We demonstrate the application of the proposed method with a multi-robot path-planning case study.

Via

Figures and Tables:

Abstract:Optimizing noisy functions online, when evaluating the objective requires experiments on a deployed system, is a crucial task arising in manufacturing, robotics and many others. Often, constraints on safe inputs are unknown ahead of time, and we only obtain noisy information, indicating how close we are to violating the constraints. Yet, safety must be guaranteed at all times, not only for the final output of the algorithm. We introduce a general approach for seeking a stationary point in high dimensional non-linear stochastic optimization problems in which maintaining safety during learning is crucial. Our approach called LB-SGD is based on applying stochastic gradient descent (SGD) with a carefully chosen adaptive step size to a logarithmic barrier approximation of the original problem. We provide a complete convergence analysis of non-convex, convex, and strongly-convex smooth constrained problems, with first-order and zeroth-order feedback. Our approach yields efficient updates and scales better with dimensionality compared to existing approaches. We empirically compare the sample complexity and the computational cost of our method with existing safe learning approaches. Beyond synthetic benchmarks, we demonstrate the effectiveness of our approach on minimizing constraint violation in policy search tasks in safe reinforcement learning (RL).

Via

Figures and Tables:

Abstract:We consider model-based multi-agent reinforcement learning, where the environment transition model is unknown and can only be learned via expensive interactions with the environment. We propose H-MARL (Hallucinated Multi-Agent Reinforcement Learning), a novel sample-efficient algorithm that can efficiently balance exploration, i.e., learning about the environment, and exploitation, i.e., achieve good equilibrium performance in the underlying general-sum Markov game. H-MARL builds high-probability confidence intervals around the unknown transition model and sequentially updates them based on newly observed data. Using these, it constructs an optimistic hallucinated game for the agents for which equilibrium policies are computed at each round. We consider general statistical models (e.g., Gaussian processes, deep ensembles, etc.) and policy classes (e.g., deep neural networks), and theoretically analyze our approach by bounding the agents' dynamic regret. Moreover, we provide a convergence rate to the equilibria of the underlying Markov game. We demonstrate our approach experimentally on an autonomous driving simulation benchmark. H-MARL learns successful equilibrium policies after a few interactions with the environment and can significantly improve the performance compared to non-exploratory methods.

Via

Figures and Tables:

Abstract:We present the design of a motion planning algorithm that ensures safety for an autonomous vehicle. In particular, we consider a multimodal distribution over uncertainties; for example, the uncertain predictions of future trajectories of surrounding vehicles reflect discrete decisions, such as turning or going straight at intersections. We develop a computationally efficient, scenario-based approach that solves the motion planning problem with high confidence given a quantifiable number of samples from the multimodal distribution. Our approach is based on two preprocessing steps, which 1) separate the samples into distinct clusters and 2) compute a bounding polytope for each cluster. Then, we rewrite the motion planning problem approximately as a mixed-integer problem using the polytopes. We demonstrate via simulation on the nuScenes dataset that our approach ensures safety with high probability in the presence of multimodal uncertainties, and is computationally more efficient and less conservative than a conventional scenario approach.

Via

Figures and Tables:

Abstract:We formulate the novel class of contextual games, a type of repeated games driven by contextual information at each round. By means of kernel-based regularity assumptions, we model the correlation between different contexts and game outcomes and propose a novel online (meta) algorithm that exploits such correlations to minimize the contextual regret of individual players. We define game-theoretic notions of contextual Coarse Correlated Equilibria (c-CCE) and optimal contextual welfare for this new class of games and show that c-CCEs and optimal welfare can be approached whenever players' contextual regrets vanish. Finally, we empirically validate our results in a traffic routing experiment, where our algorithm leads to better performance and higher welfare compared to baselines that do not exploit the available contextual information or the correlations present in the game.

Via