Abstract:Recent advancements in Large Language Models (LLMs) offer new opportunities to create natural language interfaces for Autonomous Driving Systems (ADSs), moving beyond rigid inputs. This paper addresses the challenge of mapping the complexity of human language to the structured action space of modular ADS software. We propose a framework that integrates an LLM-based interaction layer with Autoware, a widely used open-source software. This system enables passengers to issue high-level commands, from querying status information to modifying driving behavior. Our methodology is grounded in three key components: a taxonomization of interaction categories, an application-centric Domain Specific Language (DSL) for command translation, and a safety-preserving validation layer. A two-stage LLM architecture ensures high transparency by providing feedback based on the definitive execution status. Evaluation confirms the system's timing efficiency and translation robustness. Simulation successfully validated command execution across all five interaction categories. This work provides a foundation for extensible, DSL-assisted interaction in modular and safety-conscious autonomy stacks.
Abstract:Ensuring the functional safety of motion planning modules in autonomous vehicles remains a critical challenge, especially when dealing with complex or learning-based software. Online verification has emerged as a promising approach to monitor such systems at runtime, yet its integration into embedded real-time environments remains limited. This work presents a safeguarding concept for motion planning that extends prior approaches by introducing a time safeguard. While existing methods focus on geometric and dynamic feasibility, our approach additionally monitors the temporal consistency of planning outputs to ensure timely system response. A prototypical implementation on a real-time operating system evaluates trajectory candidates using constraint-based feasibility checks and cost-based plausibility metrics. Preliminary results show that the safeguarding module operates within real-time bounds and effectively detects unsafe trajectories. However, the full integration of the time safeguard logic and fallback strategies is ongoing. This study contributes a modular and extensible framework for runtime trajectory verification and highlights key aspects for deployment on automotive-grade hardware. Future work includes completing the safeguarding logic and validating its effectiveness through hardware-in-the-loop simulations and vehicle-based testing. The code is available at: https://github.com/TUM-AVS/motion-planning-supervisor