Abstract:Vision-Language-Action (VLA) models empower robots to understand and execute tasks described by natural language instructions. However, a key challenge lies in their ability to generalize beyond the specific environments and conditions they were trained on, which is presently difficult and expensive to evaluate in the real-world. To address this gap, we present REALM, a new simulation environment and benchmark designed to evaluate the generalization capabilities of VLA models, with a specific emphasis on establishing a strong correlation between simulated and real-world performance through high-fidelity visuals and aligned robot control. Our environment offers a suite of 15 perturbation factors, 7 manipulation skills, and more than 3,500 objects. Finally, we establish two task sets that form our benchmark and evaluate the π_{0}, π_{0}-FAST, and GR00T N1.5 VLA models, showing that generalization and robustness remain an open challenge. More broadly, we also show that simulation gives us a valuable proxy for the real-world and allows us to systematically probe for and quantify the weaknesses and failure modes of VLAs. Project page: https://martin-sedlacek.com/realm
Abstract:In order to deploy automated vehicles to the public, it has to be proven that the vehicle can safely and robustly handle traffic in many different scenarios. One important component of automated vehicles is the perception system that captures and processes the environment around the vehicle. Perception systems require large datasets for training their deep neural network. Knowing which parts of the data in these datasets describe a corner case is an advantage during training or testing of the network. These corner cases describe situations that are rare and potentially challenging for the network. We propose a pipeline that converts collective expert knowledge descriptions into the extended KI Absicherung ontology. The ontology is used to describe scenes and scenarios that can be mapped to perception datasets. The corner cases can then be extracted from the datasets. In addition, the pipeline enables the evaluation of the detection networks against the extracted corner cases to measure their performance.