Abstract:The discovery and optimization of materials for specific applications is hampered by the practically infinite number of possible elemental combinations and associated properties, also known as the `combinatorial explosion'. By nature of the problem, data are scarce and all possible data sources should be used. In addition to simulations and experimental results, the latent knowledge in scientific texts is not yet used to its full potential. We present an iterative framework that refines a given scientific corpus by strategic selection of the most diverse documents, training Word2Vec models, and monitoring the convergence of composition-property correlations in embedding space. Our approach is applied to predict high-performing materials for oxygen reduction (ORR), hydrogen evolution (HER), and oxygen evolution (OER) reactions for a large number of possible candidate compositions. Our method successfully predicts the highest performing compositions among a large pool of candidates, validated by experimental measurements of the electrocatalytic performance in the lab. This work demonstrates and validates the potential of iterative corpus refinement to accelerate materials discovery and optimization, offering a scalable and efficient tool for screening large compositional spaces where reliable data are scarce or non-existent.
Abstract:Detecting structure in data is the first step to arrive at meaningful representations for systems. This is particularly challenging for dislocation networks evolving as a consequence of plastic deformation of crystalline systems. Our study employs Isomap, a manifold learning technique, to unveil the intrinsic structure of high-dimensional density field data of dislocation structures from different compression axis. The resulting maps provide a systematic framework for quantitatively comparing dislocation structures, offering unique fingerprints based on density fields. Our novel, unbiased approach contributes to the quantitative classification of dislocation structures which can be systematically extended.
Abstract:MatNexus is a specialized software for the automated collection, processing, and analysis of text from scientific articles. Through an integrated suite of modules, the MatNexus facilitates the retrieval of scientific articles, processes textual data for insights, generates vector representations suitable for machine learning, and offers visualization capabilities for word embeddings. With the vast volume of scientific publications, MatNexus stands out as an end-to-end tool for researchers aiming to gain insights from scientific literature in material science, making the exploration of materials, such as the electrocatalyst examples we show here, efficient and insightful.