Abstract:Hematotoxicity, drug-induced damage to the blood-forming system, is a frequent side effect of cytotoxic chemotherapy and poses a significant challenge in clinical practice due to its high inter-patient variability and limited predictability. Current mechanistic models often struggle to accurately forecast outcomes for patients with irregular or atypical trajectories. In this study, we develop and compare hybrid mechanistic and data-driven approaches for individualized time series modeling of platelet counts during chemotherapy. We consider hybrid models that combine mechanistic models with neural networks, known as universal differential equations. As a purely data-driven alternative, we utilize a nonlinear autoregressive exogenous model using gated recurrent units as the underlying architecture. These models are evaluated across a range of real patient scenarios, varying in data availability and sparsity, to assess predictive performance. Our findings demonstrate that data-driven methods, when provided with sufficient data, significantly improve prediction accuracy, particularly for high-risk patients with irregular platelet dynamics. This highlights the potential of data-driven approaches in enhancing clinical decision-making. In contrast, hybrid and mechanistic models are superior in scenarios with limited or sparse data. The proposed modeling and comparison framework is generalizable and could be extended to predict other treatment-related toxicities, offering broad applicability in personalized medicine.
Abstract:Assurance Cases (ACs) are an established approach in safety engineering to argue quality claims in a structured way. In the context of quality assurance for Machine Learning (ML)-based software components, ACs are also being discussed and appear promising. Tools for operationalizing ACs do exist, yet mainly focus on supporting safety engineers on the system level. However, assuring the quality of an ML component within the system is commonly the responsibility of data scientists, who are usually less familiar with these tools. To address this gap, we propose a framework to support the operationalization of ACs for ML components based on technologies that data scientists use on a daily basis: Python and Jupyter Notebook. Our aim is to make the process of creating ML-related evidence in ACs more effective. Results from the application of the framework, documented through notebooks, can be integrated into existing AC tools. We illustrate the application of the framework on an example excerpt concerned with the quality of the test data.