Abstract:This work empirically evaluates machine learning models on two imbalanced public datasets (KDDCUP99 and Credit Card Fraud 2013). The method includes data preparation, model training, and evaluation, using an 80/20 (train/test) split. Models tested include eXtreme Gradient Boosting (XGB), Multi Layer Perceptron (MLP), Generative Adversarial Network (GAN), Variational Autoencoder (VAE), and Multiple-Objective Generative Adversarial Active Learning (MO-GAAL), with XGB and MLP further combined with Random-Over-Sampling (ROS) and Self-Paced-Ensemble (SPE). Evaluation involves 5-fold cross-validation and imputation techniques (mean, median, and IterativeImputer) with 10, 20, 30, and 50 % missing data. Findings show XGB and MLP outperform generative models. IterativeImputer results are comparable to mean and median, but not recommended for large datasets due to increased complexity and execution time. The code used is publicly available on GitHub (github.com/markushaug/acr-25).
Abstract:Artificial intelligence (AI) permeates all fields of life, which resulted in new challenges in requirements engineering for artificial intelligence (RE4AI), e.g., the difficulty in specifying and validating requirements for AI or considering new quality requirements due to emerging ethical implications. It is currently unclear if existing RE methods are sufficient or if new ones are needed to address these challenges. Therefore, our goal is to provide a comprehensive overview of RE4AI to researchers and practitioners. What has been achieved so far, i.e., what practices are available, and what research gaps and challenges still need to be addressed? To achieve this, we conducted a systematic mapping study combining query string search and extensive snowballing. The extracted data was aggregated, and results were synthesized using thematic analysis. Our selection process led to the inclusion of 126 primary studies. Existing RE4AI research focuses mainly on requirements analysis and elicitation, with most practices applied in these areas. Furthermore, we identified requirements specification, explainability, and the gap between machine learning engineers and end-users as the most prevalent challenges, along with a few others. Additionally, we proposed seven potential research directions to address these challenges. Practitioners can use our results to identify and select suitable RE methods for working on their AI-based systems, while researchers can build on the identified gaps and research directions to push the field forward.