Abstract:In this paper, we focus on the energy efficiency (EE) optimization and analysis of reconfigurable intelligent surface (RIS)-assisted multiuser downlink near-field communications. Specifically, we conduct a comprehensive study on several key factors affecting EE performance, including the number of RIS elements, the types of reconfigurable elements, reconfiguration resolutions, and the maximum transmit power. To accurately capture the power characteristics of RISs, we adopt more practical power consumption models for three commonly used reconfigurable elements in RISs: PIN diodes, varactor diodes, and radio frequency (RF) switches. These different elements may result in RIS systems exhibiting significantly different energy efficiencies (EEs), even when their spectral efficiencies (SEs) are similar. Considering discrete phases implemented at most RISs in practice, which makes their optimization NP-hard, we develop a nested alternating optimization framework to maximize EE, consisting of an outer integer-based optimization for discrete RIS phase reconfigurations and a nested non-convex optimization for continuous transmit power allocation within each iteration. Extensive comparisons with multiple benchmark schemes validate the effectiveness and efficiency of the proposed framework. Furthermore, based on the proposed optimization method, we analyze the EE performance of RISs across different key factors and identify the optimal RIS architecture yielding the highest EE.
Abstract:Optimizing discrete phase shifts in large-scale reconfigurable intelligent surfaces (RISs) is challenging due to their non-convex and non-linear nature. In this letter, we propose a heuristic-integrated deep reinforcement learning (DRL) framework that (1) leverages accumulated actions over multiple steps in the double deep Q-network (DDQN) for RIS column-wise control and (2) integrates a greedy algorithm (GA) into each DRL step to refine the state via fine-grained, element-wise optimization of RIS configurations. By learning from GA-included states, the proposed approach effectively addresses RIS optimization within a small DRL action space, demonstrating its capability to optimize phase-shift configurations of large-scale RISs.
Abstract:The Radio frequency (RF) fingerprinting technique makes highly secure device authentication possible for future networks by exploiting hardware imperfections introduced during manufacturing. Although this technique has received considerable attention over the past few years, RF fingerprinting still faces great challenges of channel-variation-induced data distribution drifts between the training phase and the test phase. To address this fundamental challenge and support model training and testing at the edge, we propose a federated RF fingerprinting algorithm with a novel strategy called model transfer and adaptation (MTA). The proposed algorithm introduces dense connectivity among convolutional layers into RF fingerprinting to enhance learning accuracy and reduce model complexity. Besides, we implement the proposed algorithm in the context of federated learning, making our algorithm communication efficient and privacy-preserved. To further conquer the data mismatch challenge, we transfer the learned model from one channel condition and adapt it to other channel conditions with only a limited amount of information, leading to highly accurate predictions under environmental drifts. Experimental results on real-world datasets demonstrate that the proposed algorithm is model-agnostic and also signal-irrelevant. Compared with state-of-the-art RF fingerprinting algorithms, our algorithm can improve prediction performance considerably with a performance gain of up to 15\%.