Abstract:Evaluating machine learning (ML) model bias is key to building trustworthy and robust ML systems. Counterfactual Fairness (CF) audits allow the measurement of bias of ML models with a causal framework, yet their conclusions rely on a single causal graph that is rarely known with certainty in real-world scenarios. We propose CF with Graph Uncertainty (CF-GU), a bias evaluation procedure that incorporates the uncertainty of specifying a causal graph into CF. CF-GU (i) bootstraps a Causal Discovery algorithm under domain knowledge constraints to produce a bag of plausible Directed Acyclic Graphs (DAGs), (ii) quantifies graph uncertainty with the normalized Shannon entropy, and (iii) provides confidence bounds on CF metrics. Experiments on synthetic data show how contrasting domain knowledge assumptions support or refute audits of CF, while experiments on real-world data (COMPAS and Adult datasets) pinpoint well-known biases with high confidence, even when supplied with minimal domain knowledge constraints.




Abstract:Autonomous driving has become one of the most popular research topics within Artificial Intelligence. An autonomous vehicle is understood as a system that combines perception, decision-making, planning, and control. All of those tasks require that the vehicle collects surrounding data in order to make a good decision and action. In particular, the overtaking maneuver is one of the most critical actions of driving. The process involves lane changes, acceleration and deceleration actions, and estimation of the speed and distance of the vehicle in front or in the lane in which it is moving. Despite the amount of work available in the literature, just a few handle overtaking maneuvers and, because overtaking can be risky, no real-world dataset is available. This work contributes in this area by presenting a new synthetic dataset whose focus is the overtaking maneuver. We start by performing a thorough review of the state of the art in autonomous driving and then explore the main datasets found in the literature (public and private, synthetic and real), highlighting their limitations, and suggesting a new set of features whose focus is the overtaking maneuver.