James
Abstract:Facial recognition technology (FRT) is increasingly used in criminal investigations, yet most evaluations of its accuracy rely on high-quality images, unlike those often encountered by law enforcement. This study examines how five common forms of image degradation--contrast, brightness, motion blur, pose shift, and resolution--affect FRT accuracy and fairness across demographic groups. Using synthetic faces generated by StyleGAN3 and labeled with FairFace, we simulate degraded images and evaluate performance using Deepface with ArcFace loss in 1:n identification tasks. We perform an experiment and find that false positive rates peak near baseline image quality, while false negatives increase as degradation intensifies--especially with blur and low resolution. Error rates are consistently higher for women and Black individuals, with Black females most affected. These disparities raise concerns about fairness and reliability when FRT is used in real-world investigative contexts. Nevertheless, even under the most challenging conditions and for the most affected subgroups, FRT accuracy remains substantially higher than that of many traditional forensic methods. This suggests that, if appropriately validated and regulated, FRT should be considered a valuable investigative tool. However, algorithmic accuracy alone is not sufficient: we must also evaluate how FRT is used in practice, including user-driven data manipulation. Such cases underscore the need for transparency and oversight in FRT deployment to ensure both fairness and forensic validity.
Abstract:Forensic toolmark comparisons are currently performed subjectively by humans, which leads to a lack of consistency and accuracy. There is little evidence that examiners can determine whether pairs of marks were made by the same tool or different tools. There is also little evidence that they can make this classification when marks are made under different conditions, such as different angles of attack or direction of mark generation. We generate original toolmark data in 3D, extract the signal from each toolmarks, and train an algorithm to compare toolmark signals objectively. We find that toolmark signals cluster by tool, and not by angle or direction. That is, the variability within tool, regardless of angle/direction, is smaller than the variability between tools. The known-match and known-non-match densities of the similarities of pairs of marks have a small overlap, even when accounting for dependencies in the data, making them a useful instrument for determining whether a new pair of marks was made by the same tool. We provide a likelihood ratio approach as a formal method for comparing toolmark signals with a measure of uncertainty. This empirically trained, open-source method can be used by forensic examiners to compare toolmarks objectively and thus improve the reliability of toolmark comparisons. This can, in turn, reduce miscarriages of justice in the criminal justice system.