Abstract:Fast and accurate simulation of dynamical systems is a fundamental challenge across scientific and engineering domains. Traditional numerical integrators often face a trade-off between accuracy and computational efficiency, while existing neural network-based approaches typically require training a separate model for each case. To overcome these limitations, we introduce a novel multi-modal foundation model for large-scale simulations of differential equations: FMint-SDE (Foundation Model based on Initialization for stochastic differential equations). Based on a decoder-only transformer with in-context learning, FMint-SDE leverages numerical and textual modalities to learn a universal error-correction scheme. It is trained using prompted sequences of coarse solutions generated by conventional solvers, enabling broad generalization across diverse systems. We evaluate our models on a suite of challenging SDE benchmarks spanning applications in molecular dynamics, mechanical systems, finance, and biology. Experimental results show that our approach achieves a superior accuracy-efficiency tradeoff compared to classical solvers, underscoring the potential of FMint-SDE as a general-purpose simulation tool for dynamical systems.
Abstract:We obtain asymptotically sharp error estimates for the consistency error of the Target Measure Diffusion map (TMDmap) (Banisch et al. 2020), a variant of diffusion maps featuring importance sampling and hence allowing input data drawn from an arbitrary density. The derived error estimates include the bias error and the variance error. The resulting convergence rates are consistent with the approximation theory of graph Laplacians. The key novelty of our results lies in the explicit quantification of all the prefactors on leading-order terms. We also prove an error estimate for solutions of Dirichlet BVPs obtained using TMDmap, showing that the solution error is controlled by consistency error. We use these results to study an important application of TMDmap in the analysis of rare events in systems governed by overdamped Langevin dynamics using the framework of transition path theory (TPT). The cornerstone ingredient of TPT is the solution of the committor problem, a boundary value problem for the backward Kolmogorov PDE. Remarkably, we find that the TMDmap algorithm is particularly suited as a meshless solver to the committor problem due to the cancellation of several error terms in the prefactor formula. Furthermore, significant improvements in bias and variance errors occur when using a quasi-uniform sampling density. Our numerical experiments show that these improvements in accuracy are realizable in practice when using $\delta$-nets as spatially uniform inputs to the TMDmap algorithm.