Abstract:We introduce MANTRA, an annotated dataset of 4869 transient and 71207 non-transient object lightcurves built from the Catalina Real Time Transient Survey. We provide public access to this dataset as a plain text file to facilitate standardized quantitative comparison of astronomical transient event recognition algorithms. Some of the classes included in the dataset are: supernovae, cataclysmic variables, active galactic nuclei, high proper motion stars, blazars and flares. As an example of the tasks that can be performed on the dataset we experiment with multiple data pre-processing methods, feature selection techniques and popular machine learning algorithms (Support Vector Machines, Random Forests and Neural Networks). We assess quantitative performance in two classification tasks: binary (transient/non-transient) and eight-class classification. The best performing algorithm in both tasks is the Random Forest Classifier. It achieves an F1-score of 96.25% in the binary classification and 52.79% in the eight-class classification. For the eight-class classification, non-transients ( 96.83% ) is the class with the highest F1-score, while the lowest corresponds to high-proper-motion stars ( 16.79% ); for supernovae it achieves a value of 54.57% , close to the average across classes. The next release of MANTRA includes images and benchmarks with deep learning models.
Abstract:Supervised classification of temporal sequences of astronomical images into meaningful transient astrophysical phenomena has been considered a hard problem because it requires the intervention of human experts. The classifier uses the expert's knowledge to find heuristic features to process the images, for instance, by performing image subtraction or by extracting sparse information such as flux time series in the form of light curves. We present a successful deep learning approach that learns directly from imaging data. Our method models explicitly the spatio-temporal patterns with Deep Convolutional Neural Networks and Gated Recurrent Units. We train these deep neural networks using 1.3 million real astronomical images from the Catalina Real-Time Transient Survey to classify the sequences into five different types of astronomical transient classes. The TAO-Net (for Transient Astronomical Objects Network) architecture achieves on the five-type classification task an average F1-score of 54.58$\pm$13.32, almost nine points higher than the F1-score of 45.49 $\pm$ 13.75 from the random forest classification on light curves. The achievement TAO-Net opens the possibility to develop new deep-learning architectures for early transient detection. We make available the training dataset and trained models of TAO-Net to allow for future extensions of this work.