Abstract:Moral actions are judged not only by their outcomes but by the context in which they occur. We present COMETH (Contextual Organization of Moral Evaluation from Textual Human inputs), a framework that integrates a probabilistic context learner with LLM-based semantic abstraction and human moral evaluations to model how context shapes the acceptability of ambiguous actions. We curate an empirically grounded dataset of 300 scenarios across six core actions (violating Do not kill, Do not deceive, and Do not break the law) and collect ternary judgments (Blame/Neutral/Support) from N=101 participants. A preprocessing pipeline standardizes actions via an LLM filter and MiniLM embeddings with K-means, producing robust, reproducible core-action clusters. COMETH then learns action-specific moral contexts by clustering scenarios online from human judgment distributions using principled divergence criteria. To generalize and explain predictions, a Generalization module extracts concise, non-evaluative binary contextual features and learns feature weights in a transparent likelihood-based model. Empirically, COMETH roughly doubles alignment with majority human judgments relative to end-to-end LLM prompting (approx. 60% vs. approx. 30% on average), while revealing which contextual features drive its predictions. The contributions are: (i) an empirically grounded moral-context dataset, (ii) a reproducible pipeline combining human judgments with model-based context learning and LLM semantics, and (iii) an interpretable alternative to end-to-end LLMs for context-sensitive moral prediction and explanation.
Abstract:Large language models (LLMs) are increasingly used in situations where human values are at stake, such as decision-making tasks that involve reasoning when performed by humans. We investigate the so-called reasoning capabilities of LLMs over novel symbolic representations by introducing an experimental framework that tests their ability to process and manipulate unfamiliar symbols. We introduce semantic deceptions: situations in which symbols carry misleading semantic associations due to their form, such as being embedded in specific contexts, designed to probe whether LLMs can maintain symbolic abstraction or whether they default to exploiting learned semantic associations. We redefine standard digits and mathematical operators using novel symbols, and task LLMs with solving simple calculations expressed in this altered notation. The objective is: (1) to assess LLMs' capacity for abstraction and manipulation of arbitrary symbol systems; (2) to evaluate their ability to resist misleading semantic cues that conflict with the task's symbolic logic. Through experiments with four LLMs we show that semantic cues can significantly deteriorate reasoning models' performance on very simple tasks. They reveal limitations in current LLMs' ability for symbolic manipulations and highlight a tendency to over-rely on surface-level semantics, suggesting that chain-of-thoughts may amplify reliance on statistical correlations. Even in situations where LLMs seem to correctly follow instructions, semantic cues still impact basic capabilities. These limitations raise ethical and societal concerns, undermining the widespread and pernicious tendency to attribute reasoning abilities to LLMs and suggesting how LLMs might fail, in particular in decision-making contexts where robust symbolic reasoning is essential and should not be compromised by residual semantic associations inherited from the model's training.
Abstract:Minimizing negative impacts of Artificial Intelligent (AI) systems on human societies without human supervision requires them to be able to align with human values. However, most current work only addresses this issue from a technical point of view, e.g., improving current methods relying on reinforcement learning from human feedback, neglecting what it means and is required for alignment to occur. Here, we propose to distinguish strong and weak value alignment. Strong alignment requires cognitive abilities (either human-like or different from humans) such as understanding and reasoning about agents' intentions and their ability to causally produce desired effects. We argue that this is required for AI systems like large language models (LLMs) to be able to recognize situations presenting a risk that human values may be flouted. To illustrate this distinction, we present a series of prompts showing ChatGPT's, Gemini's and Copilot's failures to recognize some of these situations. We moreover analyze word embeddings to show that the nearest neighbors of some human values in LLMs differ from humans' semantic representations. We then propose a new thought experiment that we call "the Chinese room with a word transition dictionary", in extension of John Searle's famous proposal. We finally mention current promising research directions towards a weak alignment, which could produce statistically satisfying answers in a number of common situations, however so far without ensuring any truth value.