Abstract:The scarcity of annotated medical images is a major bottleneck in developing learning models for medical image analysis. Hence, recent studies have focused on pretrained models with fewer annotation requirements that can be fine-tuned for various downstream tasks. However, existing approaches are mainly 3D adaptions of 2D approaches ill-suited for 3D medical imaging data. Motivated by this gap, we propose novel domain-aware multi-task learning tasks to pretrain a 3D Swin Transformer for brain magnetic resonance imaging (MRI). Our method considers the domain knowledge in brain MRI by incorporating brain anatomy and morphology as well as standard pretext tasks adapted for 3D imaging in a contrastive learning setting. We pretrain our model using large-scale brain MRI data of 13,687 samples spanning several large-scale databases. Our method outperforms existing supervised and self-supervised methods in three downstream tasks of Alzheimer's disease classification, Parkinson's disease classification, and age prediction tasks. The ablation study of the proposed pretext tasks shows the effectiveness of our pretext tasks.
Abstract:Purpose: Recent advancements in large language models (LLMs) have expanded their capabilities in a multimodal fashion, potentially replicating the image interpretation of human radiologists. This study aimed to develop open-source multimodal large language model for interpreting chest X-ray images (CXR-LLaVA). We also examined the effect of prompt engineering and model parameters such as temperature and nucleus sampling. Materials and Methods: For training, we collected 659,287 publicly available CXRs: 417,336 CXRs had labels for certain radiographic abnormalities (dataset 1); 241,951 CXRs provided free-text radiology reports (dataset 2). After pre-training the Resnet50 as an image encoder, the contrastive language-image pre-training was used to align CXRs and corresponding radiographic abnormalities. Then, the Large Language Model Meta AI-2 was fine-tuned using dataset 2, which were refined using GPT-4, with generating various question answering scenarios. The code can be found at https://github.com/ECOFRI/CXR_LLaVA. Results: In the test set, we observed that the model's performance fluctuated based on its parameters. On average, it achieved F1 score of 0.34 for five pathologic findings (atelectasis, cardiomegaly, consolidation, edema, and pleural effusion), which was improved to 0.46 through prompt engineering. In the independent set, the model achieved an average F1 score of 0.30 for the same pathologic findings. Notably, for the pediatric chest radiograph dataset, which was unseen during training, the model differentiated abnormal radiographs with an F1 score ranging from 0.84 to 0.85. Conclusion: CXR-LLaVA demonstrates promising potential in CXR interpretation. Both prompt engineering and model parameter adjustments can play pivotal roles in interpreting CXRs.