Abstract:Public vulnerability databases, such as the National Vulnerability Database (NVD), document vulnerabilities and facilitate threat information sharing. However, they often suffer from short descriptions and outdated or insufficient information. In this paper, we introduce Zad, a system designed to enrich NVD vulnerability descriptions by leveraging external resources. Zad consists of two pipelines: one collects and filters supplementary data using two encoders to build a detailed dataset, while the other fine-tunes a pre-trained model on this dataset to generate enriched descriptions. By addressing brevity and improving content quality, Zad produces more comprehensive and cohesive vulnerability descriptions. We evaluate Zad using standard summarization metrics and human assessments, demonstrating its effectiveness in enhancing vulnerability information.
Abstract:Phishing detection on Ethereum has increasingly leveraged advanced machine learning techniques to identify fraudulent transactions. However, limited attention has been given to understanding the effectiveness of feature selection strategies and the role of graph-based models in enhancing detection accuracy. In this paper, we systematically examine these issues by analyzing and contrasting explicit transactional features and implicit graph-based features, both experimentally and analytically. We explore how different feature sets impact the performance of phishing detection models, particularly in the context of Ethereum's transactional network. Additionally, we address key challenges such as class imbalance and dataset composition and their influence on the robustness and precision of detection methods. Our findings demonstrate the advantages and limitations of each feature type, while also providing a clearer understanding of how feature affect model resilience and generalization in adversarial environments.