Abstract:Phishing detection on Ethereum has increasingly leveraged advanced machine learning techniques to identify fraudulent transactions. However, limited attention has been given to understanding the effectiveness of feature selection strategies and the role of graph-based models in enhancing detection accuracy. In this paper, we systematically examine these issues by analyzing and contrasting explicit transactional features and implicit graph-based features, both experimentally and analytically. We explore how different feature sets impact the performance of phishing detection models, particularly in the context of Ethereum's transactional network. Additionally, we address key challenges such as class imbalance and dataset composition and their influence on the robustness and precision of detection methods. Our findings demonstrate the advantages and limitations of each feature type, while also providing a clearer understanding of how feature affect model resilience and generalization in adversarial environments.
Abstract:\begin{abstract} This paper comprehensively analyzes privacy policies in AR/VR applications, leveraging BERT, a state-of-the-art text classification model, to evaluate the clarity and thoroughness of these policies. By comparing the privacy policies of AR/VR applications with those of free and premium websites, this study provides a broad perspective on the current state of privacy practices within the AR/VR industry. Our findings indicate that AR/VR applications generally offer a higher percentage of positive segments than free content but lower than premium websites. The analysis of highlighted segments and words revealed that AR/VR applications strategically emphasize critical privacy practices and key terms. This enhances privacy policies' clarity and effectiveness.