Abstract:This paper presents a performance benchmarking study of a Gradient-Optimized Fuzzy Inference System (GF) classifier against several state-of-the-art machine learning models, including Random Forest, XGBoost, Logistic Regression, Support Vector Machines, and Neural Networks. The evaluation was conducted across five datasets from the UCI Machine Learning Repository, each chosen for their diversity in input types, class distributions, and classification complexity. Unlike traditional Fuzzy Inference Systems that rely on derivative-free optimization methods, the GF leverages gradient descent to significantly improving training efficiency and predictive performance. Results demonstrate that the GF model achieved competitive, and in several cases superior, classification accuracy while maintaining high precision and exceptionally low training times. In particular, the GF exhibited strong consistency across folds and datasets, underscoring its robustness in handling noisy data and variable feature sets. These findings support the potential of gradient optimized fuzzy systems as interpretable, efficient, and adaptable alternatives to more complex deep learning models in supervised learning tasks.
Abstract:Jailbreaking in Large Language Models (LLMs) threatens their safe use in sensitive domains like education by allowing users to bypass ethical safeguards. This study focuses on detecting jailbreaks in 2-Sigma, a clinical education platform that simulates patient interactions using LLMs. We annotated over 2,300 prompts across 158 conversations using four linguistic variables shown to correlate strongly with jailbreak behavior. The extracted features were used to train several predictive models, including Decision Trees, Fuzzy Logic-based classifiers, Boosting methods, and Logistic Regression. Results show that feature-based predictive models consistently outperformed Prompt Engineering, with the Fuzzy Decision Tree achieving the best overall performance. Our findings demonstrate that linguistic-feature-based models are effective and explainable alternatives for jailbreak detection. We suggest future work explore hybrid frameworks that integrate prompt-based flexibility with rule-based robustness for real-time, spectrum-based jailbreak monitoring in educational LLMs.